
3. Sonderbericht über zwei Vortrage am 2. und 7. März 1921.

Einführung
in die Relativitätstheorie

von

P. R i e b es e 1 1.

Mit lü Abbildungen im Text.

1. Die Grundlage der Theorie.

Einsteins Theorie ist weiter nichts als eine konsequente
Durchführung altbekannter physikalischer Prinzipien und Gesetze.

Wer sich diese Auffassung zu eigen macht> wird sich von vorn-
herein auf den richtigen Standpunkt stellen. Freilich wird es

ihm zuweilen schwer werden, die Konsequenzen bis ins Aeußerste zu

verfolgen, aber er wird der immer kleiner werdenden Zahl dei"

Gegner der Theorie ohne Weiteres gewachsen sein. Die beiden

Sätze, die hier allein zur Begründung der ganzen Theorie ge-
braucht werden sollen, sind: 1) Das Galileische Trägheitsprinzip
und 2) Der Satz von der Gleichheit der trägen und schweren
Masse. Beide Gesetze sind, wie Einstein sich ausdrückt, vor
ihm wohl „registriert", aber nicht „interpretiert" worden.

2. Das Galileische Trägheitsprinzip.
Der Wortlaut dieses Prinzips ist folgender: Jeder Körper

verharrt in dem Zustand der Ruhe oder geradlinig gleichförmigen

Bewegung, wenn keine Kräfte auf ihn wirken. Nehmen wir die

einzelnen Worte dieses Satzes vor, so muß sofort die Kritik ein-

setzen. Was heißt Ruhe? Jeder von uns hat schon erfahren,

daß, wenn der Eisenbahnzug auf der Station sich in Bewegung
setzt, es nicht zu konstatieren ist, ob der eigene oder der be-
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nachharte Zu^ ,,in Wirkliclikcil" tahrl. Erst ein Blick auf die

Bahnliofsi;ebäiide, von denen ich weiB, daß sie in Ruhe sind,

zeigt, welcher Zug sich relativ zu diesen bewegt. hinerhalb

meines Zuges kaiui ich durch keinerlei Experimente feststellen,

ob er sich „wirklich" bewegt, solange die Fortbewegung eine

geradlinig gleichförmige ist. Machen wir uns diese Tatsache
einmal recht anschaulich klar. Wenn ich im fahrenden Zuge
einen Ball in .die Höhe werfe, so fällt er in meine Hände zurück^

obgleich ich fnich
''

zwischen Abwerfen und Wiederfangen des

Balles mit D-Zugsgeschwindigkeit um mehrere Meter vorwärts

bewegt habe. Der Bali weiß hiervon nichts, er befolgt die Natur-

gesetze genau so, als wenn der Zug sich in Ruhe befindet. Wirft

dagegen ein außerhalb des Zuges befindlicher Zuschauer, an
welchem der Zug gerade vorüber saust, gleichzeitig einen Ball

in die Luft, so fällt dieser wieder in dessen Hände zurück, er

bewegt sich nicht mit vorwärts. Für den Zuschauer neben dem
Geleise bewegt sich also der Ball in dem fahrenden Zuge gar-
nicht senkrecht aufwärts und abwärts, sondern er beschreibt

eine Parabel. Umgekehrt beschreibt der Ball des ruhenden Zu-
schauers eine Parabel in bezug auf den fahrenden Zug.

In jedem der beiden Systeme gelten also die Naturgesetze,
aber der Vorgang in dem einem System wird von dem
andern aus ganz anders beurteilt. Wir sehen hier schon,
daß nicht nur der Begriff „Ruhe" in der Fassung des Träg-
heitsprinzips, sondern auch der Begriff ,, g e r a d 1 i n i g"
ernste Bedenken erregt. Die Angabe ,,geradlinig" ohne ein

Koordinatensystem ist siimlos. Bewege ich ein Stück Kreide

längs einer Tafel parallel zu meinem Körper senkrecht auf-

und abwärts, so beschreibt das Stück Kreide eine ge-
rade Linie. Bewege ich mich aber gleichzeitig vorwärts, ohne
an der Bewegung der Kreide in bezug auf meinen Körper irgend
etwas zu ändern, so entsteht an der Tafel eine sich auf- und

abwärts bewegende Wellenlinie. Werfe ich einen Stein horizontal

fort und denke ich mir die Schwerkraft ausgeschaltet, so müßte
er nach dem Galileischen Satz immerfort weiterfliegen. Erblickt

ein I^eobachter diesen Stein und .weiß er nichts von dem Fort-

schleudern, so bewegt sich dieser Stein für ihn. obgleich keinerlei

Kräfte auf den Stein wirken. Er wird nicht einsehen köinien, warum
gerade d ieser Steinsich bewegt, während die anderen in Ruhe
sind. Nach dem Galileischen F^rinzip trägt gewissermaßen der

Stein das Bewußtsein der Bewegung in sich. Warum dies ?

Und noch andere Bedenken steigen auf. Was heißt

„g 1 e i c h f ö r m i g" ? Der Begriff hat nur dann einen Sinn^.
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wenn vorher der Zeitbegriff definiert ist. Wie schwer das aber

ist, werden wir später sehen. Und dann ferner die Begriffe

„Kfirper" uim\ „Kraft". Auf die Schwierigkeit hierfür liraiichliare

Definitionen zu finden, sei schon jetzt hingewiesen.

3. Das klassische Relativitätsprinzip.

Um aus diesen Schwierigkeiten, von denen ein Teil bereits

vor Einstein bekannt war, herauszukommen, stellte die klassische

Mechanik, das sogenannte Relativitätsprinzip auf, dessen

Wortlaut sich folgendermaßen formulieren läßt: Durch keinerlei

Versuche innerhafb eines Systems ist es möglich, die absolute

Bewegung dieses Systems festzustellen, solange es sich um gerad-

linig gleiclif(")rmige Bewegungen handelt. Beobachtbar sind immer
nur relative Bewegungen, die ich feststellen kann, wenn ich

Gegenstände zu Hilfe nehme, die außerhalb meines Systems liegen.

Befinde ich mich z.B. in einem Boot auf einer Wasserfläche, so

kann ich niemals in dem Boot die Strömungsrichtung des Wassers
feststellen. Sehe ich Vom Ufer, vom Grund, von der Luft, vom
Sternenhimmel— alles Gegenstände außerhalb meines Systems

—
ab, so kann ich weder durch die Ruder noch durch andere

Hilfsmittel konstatieren, wohin das Wasser fließt., Was heißt in

diesem Falle überhaupt ,, Fließen" ? Habe ich die Bewegung des

Flusses in bezug auf das Ufer festgestellt, so habe ich damit

noch nicht die absolute Bewegung. Denn. die Erde, bewegt sich

wieder in bezug auf, die Sonne, diese wieder in bezug auf andere

Fixsterne, eine absolute Bewegung, ist nicht festzustellen, es sei

denn ich hätte ein absolut feststehendes Koordinatensystem.
Dieses oibt es aber offenbar nicb.t. , Denn wo soll ich es an»

bringen ? ,

,

Nun scheint dieser Satz allerdings in Widerspruch mit dem
Galileischen Trägheitsprinzip zu stehen. Dort wird klar gesagt,
daß ein Körper in der Ruhe, die er hat, verharrt, wenn keine

äußeren Kräfte auf ihn wirken. Es könnte mir also durch Ver-

suche gelingen, ein System zu finden, in dem das Galileische

Prinzip absolut gilt. Doch selbst wenn ich ein solches System
gefunden hätte, so sagt dasselbe Prinzip auch aus, daß alle zu

diesem System geradlinig gleichförmigen Systeme völlig gleichbe-
deutend mit ihm sind. Ich kcninte jedes als ruhend und die

andern als bewegt auffassen. Die Naturgesetze würden in allen

absolute Geltung haben. Sie müssen -so konstruiert sein, daß

die geradlinig gleichförmige Bewegung der Systeme in ihnen

garnicht vorkommt,
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4. Das Einsteinsche Relativitätsprinzip.

Wie bereits in dem ersten Satz dieser Abhandlung gesagt
wurde, besteht die Einsteinsche Theorie nur in einer konsequenten
Durchführung bekannter Prinzipien. Und so ist das Einsteinsche

Relativitätsprinzip nichts als eine Weiterführung des klassischen

Relativitätsprinzips, dessen Gültigkeit für die Gesetze der Mechanik
immer allgemein anerkannt wurde. In der Optik schien dagegen
dieses Prinzip zu versagen, und zwar aus folgenden Gründen.
Denke ich mir auf der Erde irgendwo ein Lichtsignal ausgesandt,
so will ich das Licht als kleine Boten auffassen, die von dieser

betreffenden Stelle aus fortlaufen. Sehe ich von dem Luftmeer,
das ja nicht der Träger des Lichts ist, ab, so bewegen sich

diese Boten oberhalb der Erdoberfläche im Aether vorwärts, Ist

nun die Erde in Ruhe, so werden alle Boten nach allen Seiten

gleich schnell forteilen und nach einer Sekunde werden sie, auf

der Erde gemessen, auf der Peripherie eines Kreises mit dem
Radius 300 000 km angekommen sein. Wie ist es nun aber,
wenn die Erde sich in bezug auf den Aether bewegt V Und das
tut sie ja sicher, da sie sich schon um die Sonne bewegt. In der

Bewegungsrichtung der Erde wird die Erde unter den Boten hin-

wegeilen, diese werden in einer Sekunde nicht so weit gekommen
sein als vorher. Der Kilometerstein 300 000 läuft ihnen gleich-
sam davon, sie werden bis zur Erreichung desselben eine längere
Zeit brauchen. Wie ist es in der entgegengesetzten Richtung ?

Hier kommt der Kilometerstein 300 000 den Boten entgegen. Sie

werden ihn in kürzerer Zeit erreichen oder in einer Sekunde
einen größeren Weg zurücklegen. Mit andern Worten, die Ge-

schwindigkeit der Boten, d, h. der Weg in einer Sekunde, müßte
in den verschiedenen Richtungen ein verschiedener sein. Ich

könnte leicht die Richtung herausfinden, in welcher die Ge-

schwindigkeit die kleinste ist. Damit hätte ich die Bewegungs-
richtung der Erde in bezug auf den Aether, den absoluten Raum,
und könnte aus zwei Messungen in entgegengesetzter Richtung
dann auch leicht die absolute Größe dieser Geschwindigkeit fest-

stellen. Das wäre aber ein Widerspruch zum Relativitätsprinzip,
denn ich hätte durch Messungen innerhalb eines Systems die

absolute Bewegung desselben festgestellt. Nun hat sich durch
Versuche ergeben, daß tatsächlich für die Lichtgeschwindigkeit
in beliebigen Richtungen immer derselbe Wert, nämlich 300 000
km in der Sekunde, herauskofunit. Wie ist dieser Widerspruch
zu erklären ?

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at



— 4r»

5. Der Michelsonsche Versuch.

Versuch, der das soeben genannte Resultat er-

bracht hat, ist in der Abb. 1

dargestellt. Von A ans geht ein

Lichtstrahl, der bei P auf eine

Glasplatte trifft. Ein Teil des

Lichtes wird reflektiert nach Q
und dort von einem Spiegel in

der ankommenden Richtung zu-

rückgeworfen. Ein anderer Teil

des Lichts geht nach R und wird

dort ebenfalls reflektiert. Wenn
beide wieder in P angekommen

JQ^sind,
haben sie, wenn PQ---PR-=/

ist, denselben Weg zurück gelegt.

Beim Zusammentreffen der

Wellen treten daher ganz be-

stimmte, imVoraus zu berechnende Gangunterschiede, d.h. Interferen-

zen, auf. Bewegt sich dagegen das System durch den Aether und
falle die Bewegung mit der Geschwindigkeit v in die Richtung
von P nach Q, so ist, wenn die Lichtgeschwindigkeit c ist, zum

Durchlaufen von PQi die Zeit erforderlich, zum Durchlaufen

von QiPi die Zeit
/

c-fv

/

f
/

lür die Gesamtstrecke

2 / c 2 /

Zum

2/

c-|-v

Durchlaufen

-v^

also

1

die Zeit

1

der Strecke PRP oder PR,P, ist

c-

nötig

Die beiden Zeiten sind nicht gleich, der Unterschied

V C--V-
in den beiden Zeiten ist vielmehr in erster Annäherung:

/ V-
Um diesen Betrag ist die zuerst betrachtete Zeit

c c-

länger als die zweite.

Wäre also der Apparat in der angegebenen Weise justiert,

so mutete sich eine Veränderung der Interferenzen je nach der

Größe von v ergeben. Da ich nun die wahre Bewegungsrichtung
der Erde nicht feststellen kann, so weiß ich nicht, wann PQ tat-
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sächlich in dieser Bewegunosrichtuno; h'egt. Durch Drehen des

Apparates würde ich aber in der Lage sein, die Aeuderiiiig der

Interferenzen zu erlialten. Dieser Versuch, der zuerst von Michelson

ausgeführt wurde, hat nun aber stets negative Resultate gehabt.
Wie läßt sich das erklären ?

Erstens könnte ich annehmen, daß die Erde den Aether
mit sich führt. Dann wäre der Apparat in bezug auf den Aether
in Ruhe und ein Unterschied in den Zeiten würde nicht auftreten.

Es haben aber andere Experimente, vor allem der Fizeausche

Versuch, bei dem die Geschwindigkeit des Lichts in zwei Wasser-
r()liren von entgegengesetzter Str(')mungsrichtung gemessen wurde,

gezeigt, daß die Kchper den Aether nicht mitführen. Die zweite

M()glichkeit wäre folgende : I3ie Geschwindigkeit des Lichts im
ruhenden Aether wäre in den verschiedenen Richtungen eine

verschiedene. Es haben sich aber keine Anhaltspunkte ergeben,
die diese Annahme rechtfertigen, im Gegenteil zahlreiche Be-

obachtungen sprechen dagegen. Es bleibt also nur die Annahme,
daß an den andern Größen, die in unsere [Rechnung eingehen,

irgend etwas nicht in Ordnung ist. Lorentz nahm an, daß sich

eine Strecke verkürzt, wenn sie in ihrer eigenen Richtung gegen
den Aether bewegt wird. Wäre das der Fall, so dürfte ich in

beiden Fällen nicht mit demselben /rechnen, und der Widerspruch
wäre aufgeklärt. Dann könnte ich auch das Beispiel mit den
Lichtboten im vorigen Abschnitt erklären. Läuft der Kilometer-

stein 300 000 den Boten unter den Füßen fort, so verkürzt sich

andererseits die Strecke in demselben Maße, sodaß für die Ge-

schwindigkeit derselbe Wert herauskommt. Diese Verkürzung der

Strecken hätte nun aber auch auf andere Weise bemerkt werden

müssen, und da alle Versuche, sie aufzufinden, gescheitert sind,

karii Einstein auf die Idee, daß auch noch andere Größen in der

Rechnung, wenn auch nicht direkt, vorkommen. Diese anderen
Grr»ßen sind die Zeiten. Wir haben immer von Geschwindigkeiten
geredet. Eine Geschwindigkeit ist aber ein Weg dividiert durch

eine Zeit. Rechnen die verschiedenen Boten in meinem Gedanken-

experiment nicht mit denselben Zeiten, sondern haben sie Uhren,
deren Gang von der Geschwindigkeit in bezug auf die Erde, von
der aus ich beobachte, abhängig ist, so können sich zur Zurück-

legung der Wege in den verschiedenen Richtungen doch gleiche

Geschwindigkeiten ergeben. Rechnen beispielsweise die Boten,
denen die Erde unter den Füßen fortläuft, mit längeren Sekunden,
so ergibt sich trotzdem für die längere Strecke dieselbe Ge-

schwindigkeit. Wird auf den beiden Achsen des Michelsonschen

Apparats mit verschiedenem Zeitmaß gemessen, so ist das Re-
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sultat erklärbar. Der. Versiicfi tiilirt zu der Konsequenz, daß
erstens die .Lichti;eschwindigkeit in dlleii Systemen denselben
Wert hat und daß es zweitens eine absolute Zeit nicht gibt.

Um diese Folgerungen richtig zu verstehen, müssen wir darüber

einige weitere Ausführungen machen.

6. Die Gleichzeitigkeit.
Wie bestimme ich, daß zwei Ereignisse, die an verschiedenen

Orten vor sich gehen, gleichzeitig sind ? Sehr einfach, wird

man sagen, indem man an jedem Ort nach der Uhr sieht. Welches
ist aber die Voraussetzung hierfür ? Offenbar die, daß es an
den beiden Orten synchrone Uhren gibt. Wie kann ich mir nun
aber das Gleichlaufen der beiden Uhren herstellen ? Ein Weg
wäre der, daß ich die Uhren nebeneinander vergleiche und dann
die eine Uhr an den entfernten Ort bringe. Dabei ist voraus-

gesetzt, daß die Uhr durch die Bewegung in ihrem Gang nicht

beeinflußt wird. Daß tatsächlich eine solche Beeinflussung mög-
lich ist, werden wir später sehen, es muß also dieser Weg für

uns ausscheiden. Eine andere Möglichk;,Mt, die auch in der

Praxis allgemein angewandt wird, ist die durch Signale. Zu-
nächst die akustischen Signale.

Wir wollen annehmen, wir hätten drei Schiffe, die in

gleichen Abständen voneinander, hintereinander auf einem Fluß

liegen. Gibt dann das mittlere Schiff um 12 Uhr ein Signal,
so können die beiden andern ihre Uhren nach diesem Signal
stellen. Dabei ist, wenn ich genaue Zeit haben will, noch zu

berücksichtisjen, daß der Schall von dem mittleren Schiff zu den
andern Schiffen eine gewisse Zeit braucht. Ist die Entfernung

der Schiffe a, so müßten die beiden Uhren um —^— Sekunden
V

nach 12 gestellt werden, wenn v die Schallgeschwindigkeit ist.

Was ist dann aber noch vorausgesetzt? Es ist angenommen,
daß die Schiffe relativ zur Luft sich nicht bewegen, denn andern-
falls würde ja der Schall zu dem einen Schiff kürzere Zeit brauchen
als zu dem andern. Würde also eine und dieselbe Methode
der Zeitregulierung auf zwei verschiedenen Schiffstripeln ange-
wandt werden, von denen das eine ruht und das andere sich

bewegt, so würden die beiden, wenn sie aneinander vorüber-

gleiten, sehen, daß die benachbarten Uhren verschiedene Zeit

zeigen. Beim Schall könnte ich diese Fehler leicht ausgleichen,
indem ich verlange, daß die „falschen" Uhren des bewegten
Systems nach den „richtigen" des ruhenden gestellt werden. Wie
ist es nun aber beim Licht ? Welches System in bezug auf den
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Aether ruht, weiß ich nicht, ich darf also nicht verlangen, daß
die Uhren des einen Systems nach denen des andern reguliert
werden. Ich mnß vielmehr verlangen, daß jedes System für sich
die vorgeschriebene Art der Uhrenrcguliernng anwendet.

Wie verhalten sich dann aber die Uhren in den ver-
schiedenen Systemen? Ich nehme an, daß (Vergl. Abb. 2)

^^ g^
D nm 12 Uhr ein Lichtstrahl von A

^ ==i "^ ^^nach B gesandt wird. Wenn dieser

inB eintrifft, zeigtdieUhrdort
—

;

— Sekun-
^

» B
-M-^-ö

^.

den nach 12 Uhr. Ueber AB möge ein

Au 1 riesengroßes Luftschiff gleiten mit der Ge-

schwindigkeit V in der Pfeilrichtung. Während sich Ai über A
befindet, soll auch die Uhr im Luftschiff 12 Uhr zeigen. Reguliert
auch der Beobachter im Luftschiff seine Uhren selbständig, so

würde er in B. die Uhr auf Sekunden nach 12 Uhr stellen
c

müssen, wenn sich das Ende des Luftschiffs in dieser Zeit von
Bi nach Bj bewegt. Wenn also der Lichtstrahl in B bzw. Bi

angekommen ist, zeigt die Uhr in Bi noch nicht soviel als in B.

Bewegte Uhren scheinen, vom ruhenden System aus beurteilt,

nachzugehen.
Eine Folge davon ist, daß der Begriff der Gleich-

zeitigkeit seine absolute Bedeutung verliert. Nach der bis-

herigen Vorschrift für die Uhrenregulierung wissen wir, daß wir

eine Zeitregulierung von einer Signalübertragung nicht trennen

können. Die Gleichzeitigkeit zweier Ereignisse kann ich auch

so definieren, daß ich sage, die beiden Ereignisse in A und B
sind dann gleichzeitig, wenn ich sie in einem in der Mitte von
AB in M (Vergl. Abb. 3) angebrachten ^^ Mi ß,

Spiegel gleichzeitig sehe. Denke ich mir
' =^ '^ '

nun aber wieder über AB ein zweites be-

wegtes System Ai Bi, etwa das Luftschiff, A M B
das in der Ffeilrichtung fährt, so frage
ich, wie würde dasselbe Ereignis vom

Abi. 3

bewegten System aus erscheinen ? Der Beobachter in Mi nähert
sich während des Vorgangs dem von B kommenden Strahl, er

wird ihn zweifellos früher wahrnehmen als den von A kommenden.
Für ihn werden also diebeidenEreignissesichernichtgleichzeitigsein.
Eine Folge davon ist, daß auch eine Strecke in einem System, wenn
sie von einem dazu bewegten aus betrachtet wird, nicht dieselbe

Länge hat. Längen können nämlich nur gemessen werden, wenn

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at



— 49 —

ihre Endpunkte gleichzeitig fixiert werden. Da nun aber Gleich-

zeitigkeit in den verschiedenen Systemen Verschiedenes bedeutet,
so ist es klar, daß Abweichungen eintreten müssen. Damit
haben wir eine andersartige Erklärung für die Lorentz-Kontraktion.

Um diese Verhältnisse quantitativ verfolgen zu können, müssen
wir zu Formeln und graphischen Darstellungen greifen.

sich

Um einen

bekanntlich

ö

AU.A-.

7. Die Transformationsgleichungen.
Punkt in einer Ebene zu fixieren, bedient man
eines Koordinatensystems. Seien in Abb. 4

Pi und Pj zwei Punkte mit den
Koordinaten Xi, yi bzw. x-, yj, so

ergibt sich für ihre Entfernung nach
dem Lehrsatz des Pythagoras

S-'=(X,.
— Xi )

-'

-\-{y-:
—

Vi)
'"

oder, wenn ich zwei benachbarte

~x' Punkte nehme :

ds-=dx--[-dy'
^ als Gleichung des Linienelements.

Stelle ich nun dieselbe Strecke in

einem zweiten Koordinaten-System,

etwa mit den verschobenen Achsen x', y', dar, so ergibt sich, da

x-^x'-j-a und y=y'H-b :

s-'--(x'...+a-x'i-a)-'+(y'.+b-y'i-b)~(x',-x',)-'+(y'.-y'i)^
d. h. es ergibt sich derselbe Wert wie vorher. Man sagt, der

Ausdruck für das Linienelement ist invariant gegen die Trans-

formation der Verschiebung. Dasselbe ergibt sich, wenn ich eine

Drehung des Koordinatensystems vornehme. Ebenso könnte ich

natürlich auch das Koordinatensystem fest lassen und die Strecke

beliebig drehen und verschieben. Immer erhalte ich dieselbe

Länge. Das gleiche gilt von Figuren, sodaß daraus ohne weiteres

die Gültigkeit der Kongruenzsätze folgt. Das alles erscheint

selbstverständlich, ist es aber nicht. Es steckt vielmehr eine ganz
bestimmte Voraussetzung über unsern Raum darin, nämlich die,

daß ich Strecken und Figuren ohne Dimensionsänderungen in ihm
verschieben und drehen kann. Daß diese Forderung nicht selbst-

verständlich ist, geht daraus hervor, daß sie zwar für alle Flächen

gleicher Krümmung (z. B. Ebene, Kugel) gilt, nicht aber für

Flächen, bei denen sich die Krümmung von Punkt zu Punkt ändert.

Zeichne ich z. B. auf einer Eifläche ein Dreieck aus drei gleichen
Seiten und verschiebe dies, so sehe ich sofort, daß sich die

Winkel und die Fläche ändern. Wir wollen aber diesen Fall
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also in

einer

AU.5.

einem System die

Sekunde c Meter

vorlaufig nicht weiter betracliten, sondern wollen uns fragen,
welche Beziehungen zwischen ikn Koordinaten eines festen und

denen eines bewegten Systems bestehen. Bewegt sich das zweite

System mit der Geschwindigkeit v gegen das erste in Richtung der

X-Achse und zwar so, daß die y- und z-Achsen beider Systeme
einander parallel laufen, so gelten
nach Abb. 5 die Beziehungen:

2) x'=x-vt,y'=y,z'=z,t'=t,
da ja zur Zeit t das bewegte System
das Stück vt vorgerückt ist. Diese

Gleichungen werden als Galilei-
Transformation bezeichnet. Sie

bildeten die Grundlage der klassischen'

Mechanik. Das wichtigste Merkmal
der Gleichungen ist, daß die Zeit in

beiden Systemen dieselbe bleibt. Ist

Zeit so definiert, daß das Licht in

zurücklegt, so gilt diese Definition nicht mehr in einem zweiten.

Lasse ich z. B. zu einer bestimmten Zeit in einem bestimmten

Punkt des ersten Systems ein Lichtsignal abgehen, so breitet

sich dieses in Form einer Kugel nach allen Seiten gleichförmig aus.

Betrachtet der Beobachter im bewegten System diese Kugel, so

kann er sie unmöglich als Kugel mit seinem Standort als Mittel-

punkt ansehen, da ja in Richtung der Fortbewegung sich in seinem

System das Licht langsamer, in entgegengesetzter Richtung schneller

weiterbewegt. Wir haben nun schon gesehen, daß nach der

Einsteinschen Forderung, die sich aus einer Konsequenz aus Ver-

suchen und Ueberlegungen ergab, die Uhrenregulierung in beiden

Systemen unabhängig von einander auf gleiche Weise geschehen
muß. D. h. die Kugel der Lichtausbreitung in dem einen System
muß auch in dem bewegten als Kugel um den jeweiligen Beobachter
als Mittelpunkt erscheinen. Mathematisch heißt das,

jenige Transformation gesucht werden, die die

Lichtausbreitung in dem ruhenden System

es muß die-

Gleichung der

x--f-y-'+z'=c-t-

in die gleiche im zweiten System

x'-+y''+z'-^=c-t'-

überfülirt. Die Transformationsgleichungen, die dieses leisten,

stammen von Lorentz und werden als Lorentz- Transformation be-

zeichnet. Sie lauten;

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at



51 —

X—vt
t—

x'^

3)
V

,y'=y,z'=z. t'=

vx

1— v^

und umoekclirt

x4-vt'

4)

V
y=y',z^z', t=

V ~"v^

c-

1
— V- V

1
—

Als wichtigstes Resultat sehen wir, daß die Zeiten in den beiden

Systemen verschieden sind, wie wir dies auch schon aus den

früheren Ueberlegungen geschh)ssen haben. Soll nämlich der

Kreis der Lichtausbreitung, wenn wir nur die x, y—Ebene be-

trachten, zu einer gewissen Zeit auch dem bewegten Beobachter

als Kreis erscheinen, so müssen eben die Lichtpunkte, die als

gleichzeitig gesehen werden, nicht dieselben sein. Zeigen bei-

spielsweise die in Fig. 6 mit 1 bezeich-

neten Uhren, an denen das Licht im

ruhenden System nach einer Sekunde

angekommen ist, die Zeit 1, so müssen

im'bewegten System die Uhren 1' (beide
-f|

Male ist der Radius des Kreises c) die

Zeit 1 zeigen. Eine weitere Folgerung
aus den Formeln ist die, daß es Ueber-

lichtgeschwindigkeiten nicht gibt, denn

dann wird die Wurzel imaginär. Zwei

Ereignisse, die an verschiedenen Orten

im ersten System gleichzeitig vor sich

gehen, haben, wie aus der letzten Gleichung von (4) folgt, im zweiten

die Zeitdifferenz

Au.G

5)
ti'-t.'= ,, (x.'-x,')

c-

Ferner ändert sich die Entfernung zweier Punkte. Es wird wie

aus der ersten Gleichung von 3) folgt:

(X2—Xj)

xj'
—Xi'= oder xj

—
Xi = (x/ -'Xi')

• V v'^

6) V
—

I 1
-

1

V-

c-

Es tritt also eine Verkürzung ein.
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Ein Vorgang, der sich an einem bestimmten Punkt x' des

bewegten Systems abspielt und dort f.— t'i Sekunden dauert,

hat, in den Einheiten des ruhenden Systems gemessen, wie aus

der letzten Gleichung von (3) folgt, die Zeitdauer

t..>-ti

t,,'_t/ = oder t,— t,
= (t,'— t,')

• V v

7) y-^"-^
'-t^

1

c-

Für die Anzahl Sekunden im ruhenden System ergibt sich dem-
nach ein kleinerer Wert. Wir sehen also, daß sich die Zeiten

und die Strecken ändern, wenn sie vom ruhenden System aus

betrachtet werden, und zwar erscheint die Strecke verkürzt, die

Uhr scheint langsamer zu gehen.

8. Die Uhrenregulierung.

Wir können uns dieses Resultat auch noch folgendermaßen
veranschaulichen. Wenn wir in einem System 1, das wir als das

ruhende bezeichnen wollen, in den Abständen a voneinander

Uhren aufstellen und diese synchron regulieren, so erhalten wir

das in der Abb. 7 dar-

gestellteBild. ImSystem „

11, das sich in der Pfeil-
^

richtung mit der Ge-

schwindigkeit v bewegt, i
soll nun eine von I un-

abhängige Uhrenregu-
lierunggelten. Nach den
in der Abb. 2 darge-

^^^"^

legten Verhältnissen

müssen wir die Zeiger-

stellung in der aus der ^

Abb. 7 ersichtlichen

Form vornehmen, wenn
zu Beginn der Zeitrech-

nung die Uhr Ui' sich

gerade überUi befindet.

Denn wenn zur Zeit AttS.

Null von Ui ein Lichtstrahl ausgesandt wird, der zu einem ge-
wissen Zeitmoment in Uj angekommen ist, so liedeutet dieser

Zeitmoment nicht dasselbe im bewegten System, vielmehr ist die

Uhr U;;' während dessen ein Stück nach rechts gerückt und wenn
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auch im zweiten System der Lichtstrahl zum Durchlaufen der

Strecke a dieselbe Zahl von Zeiteinheiten gebrauchen soll, so

muß die Uhr Uj' am Beginn der Zeitrechnung um ein bestimmtes

Stück hinter Uj zurückgestellt sein. Dasselbe gilt von U.;' usw.

Umgekehrt ist es auf der linken Seite. Braucht der Lichtstrahl,

um von Ui nach Ut zu kommen, eine Anzahl von Zeiteinheiten

und soll er bei derselben Anzahl von Zeiteinheiten im bewegten

System von UT nach Ui' kommen, so muß die Uhr in Ui' vor-

. gestellt sein, da sie ja den Lichtboten entgegenkommt.
in welcher Weise ich quantitativ die Uhrenregulierung vor-

zunehmen habe, sagt der Michelsonsche Versuch aus: Geht ein

Lichtstrahl vom Ort Ui nach U:: und wird dort nach Uj reflektiert

so habe ich die Uhr in Uj auf —- zu stellen, wenn t die Zeit

bis zur Rückkehr des Lichtstrahls in Ui angibt, Ist x der Abstand
eines Beobachters im System 1 vom Anfangspunkt Ui, so ist nach
der letzten Gleichung der Formel 3) der Stand der gerade über
ihm befindlichen Uhr des 2. Systems gegeben durch

vx vx

c^" "c"^

t' V
1—

bezw. — auf der linken Seite — durch t'
—

y

Trage ich

t=0 grapi
i-i'

c- c-

die Differenzen der Zeigerstcllungen t— t' zur Zeit

lisch auf, so ergibt sich das Bild der Figur 9, wo die

geneigte Gerade die Gleichung hat:

vx

c^'

8) t-f =
V
1- v^

?
Betrachten wir jetzt einen Zeitmoment, in dem
das System II sich um das Stück a nach rechts

bewegt hat, so ist die dazu benötigte Zeit

V

und nach der letzten Gleichung (3) ist

a vx

AuT

t' =
V"
1- -.
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Bereclinet man jetzt die Differenz t— t', so ergibt sich, wenn man
V-

Reilienentwickliingdie höheren Potenzen von

V ^
c-

in der von

1
—

.^ vernachlässigt, die Gleichung t-

AUlO.

9)
Wir erhalten also das durch die Figur 10

dargestellte Bild. Unsere Uhren würden zur

Zeit t, wenn diese Zeit gerade durch einen

Umlauf unserer Zeiger ausgedrückt wäre, etwa
die in Figur 8 gezeichnete'Stellung einnehmen.
Aus dieser Veranschaulichung der Zeiger-

Stellung erhalten wir nun auch sofort eine

Klarstellung über den G a n g der Uhren.
Betrachten wir z. B. die bewegte Uhr Ui'

vom System I aus, befinden wir uns also

gegenüber U/, d. h. in Ui bezw. Uj, so ist

am Anfang das Bild 7 und am Schluß das Bild 8 maßgebend.
Während die Uhr meines Standpunktes eine volle Umdrehung
gemacht hat, ist die bewegte noch nicht so weit fortgeschritten,
sie scheint langsamer zu gehen. Das geht auch ohne weiteres

aus der Abb. 10 hervor; denn im Punkte U.- bezw. U/ ist t— t'

positiv, d. h. t ist größer als f. Dasselbe gilt, wenn ich die

ruhende Uhr vom bewegten System aus betrachte, ich mich also

im System II dauernd gegenüber Ui aufhalte und den Gang dieser

Uhr verfolge. Am Anfang ist die Zeigerstellung der Abb. 7 maß-

gebend und am Schluß die der Abb. 8. Während in dem System,
in dem ich mich aufhalte, die Uhr mehr als eine Umdrehung ge-
macht hat, ist im System I nur eine Umdrehung vollzogen. Die Uhr
des Systems 1 scheint vom System 11 aus betrachtet ebenfalls

nachzugehen. Das lese ich auch direkt aus der Zeichnung 10

ab, da im Punkte Ui t
—

t' negativ ist, d. h. t' größer als t ist.

9. Die Raum-Zeit Welt.
Um uns die oben entwickelten Resultate

noch etwas anschaulicher darzustellen, be-

nutzen wir eine graphische Darstellung.
In der Abb. 11 ist ein sogenannter

graphischer Fahrplan gegeben. Auf der

wagerechten Achse sind die Strecken, auf

der senkrechten die Zeiten aufgetragen.

Bewegt sich ein Fisenbahnzug auf der wage-
rechten X-Achse vom Anfangspunkt aus nach

rechts, so kann ich seine Bahn auch so be-AU11
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schreiben, dali ich jctlein I^mkt, in dem er sich befindet, eine

bestimmte Zeit zuordne. Legt derZng l)eispielsweise in der Zeitein-

heit die Strecke 2 zurück, so entsteht das Bild der Geraden 1,

wälirend, falls in der Zeiteinheit die Streckeneinheit zurückgelegt

wird, das Bild der Geraden 2 entsteht. Die Geraden, oder im

allgemeinen Fall die Kurven, können als die Raum-Zeit-Linien
oder die Weltlinien des Zuges bezeichnet werden. Denn es ist

klar, sobald wir nicht, wie hier im Beispiel, die Bewegung ledig-
lich auf die x-Achse beschränken, sondern eine Bewegung in der

Ebene zulassen, so tritt die Zeit t als dritte Koordinate, bei einer

Bewegung im dreidimensionalen x—y
— z—Raum tritt t als vierte

Koordinate hinzu.

Wie ist es nun, wenn wir die Bewegung des durch die

Gerade 1 betrachteten Zuges von einem zweiten Koordinatensystem
aus betrachten, das mit der Geschwindigkeit v zum ersten grad-

linig gleichförmig längs der x-Achse bewegt wird? Während
zu einer gewissen Zeit t sich der Zug in P, d. h. um das Stück

x von o entfernt befindet, ist P im zweiten System erst um das

Stück X— vt vorwärts gekommen, da sich ja das zweite System
selbst mit der Geschwindigkeit v in derselben Richtung vorwärts

bewegen sollte. Wir sehen also, daß wir die Koordinaten von P
an einer beliebigen Stelle der Ebene durch das in Abb. 11 dar-

gestellte schiefwinklige Koordinatensystem x, t' erhalten. Da das

Zeitmaß des zweiten Systems genau dasselbe sein soll wie das

des ersten, so fällt die x-Achse mit der x'-Achse zusammen, da

auf beiden t=t'=^0 ist. Die t'-Achse ist die Weltlinie des Null-

punktsdeszweiten Systems, des Punktes x'^=0. Ich kann also die in

der Abb. 5 dargestellte Tatsache des Fortbewegens des 2. Systems
besser in der Form der Abb. 11 darstellen, wo die Wanderung
des Anfangspunktes des zweiten Systems in der Form eines

graphischen Fahrplans dargestellt wird. Das Auffallende ist, dal^

während die t-Achse gedreht wird, die x-Achse in ihrer Lage
verharrt. Wir werden sofort sehen, daß dieses eine Folge unserer

Festsetzung über die Uhrenregulierung ist, indem angenommen
wurde, daß stets t'=t sein soll.

Stellen wir nämlich einmal unsere

frühere Ueberlegungüber die Aussendung
von Schall- oder Lichtsignalen in dieser

Weise graphisch dar. In der Abb. 12

sei C der Punkt, von dem aus zur Zeit

t— Lichtstrahlen ausgehen. Die Welt-
linien für die nach beiden Seiten aus-

gehenden Lichtstrahlen sind durch die

Geraden C Ai und C B^ dargestellt,

t
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AU13

die unter einem Winkel von 45*^ verlaufen, wenn die Einheit auf

der t-Acl)se beträi»!. Die Weltlinien der beiden im gleichen
c

Abstände von C befindlichen Punkte Aund B sind durcli die Geraden

AAi undBBi dargestellt. Wir sehen sofort, daß die Lichtstrahlen

gleichzeitig in A und B eintreffen, denn die Punkte Ai und Bi haben

'dieselbe t-Koordinate. Wie ist es nun aber, wenn dieses Ereignis
von einem mit der Geschwindigkeit v bewegten Beobachter aus

betrachtet wird ? Wie die Abb. 13

zeigt, treffen die Lichtstrahlen die

in diesem System ruhenden Punkte,
die durch die Weltlinien AA^. und
BB.- dargestellt sind, in den beiden

Punkten Aj und Bj, die nicht gleich-

zeitig sind. Ich kann aber ein

System finden, in dem auch diese

Weltpunkte dasselbe t' haben, in-

dem ich eine x'-Achse wähle, die'^'

AjB- parallel ist. Soll also die von
C ausgehende Lichtwelle in jedem
bewegten System als Kugel um den
Beobachter erscheinen (d.h. für beliebig geneigte t'-Achsen), so muß ich

auchentsprechend geneigte x'-Achsen nehmen. Damit ist dicBeziehung
t'^ taufgehoben und es gelten die früher besprochenen Gleichungen
tler Lorentz-Transformation. Zwei beliebige Weltpunkte Pi und
Pj d. h. zwei Ereignisse, die an verschiedenen Orten zu ver-

schiedener Zeit sich ereignen, können in einem geeignet gewählten
Koordinatensystem gleichzeitig erscheinen, ebenso können gleich-

zeitige Ereignisse als verschiedenzeitig gedeutet werden je nach
der Wahl des Bewegungszustandes des zweiten Systems. Doch

gelten diese Sätze mit einer gewissen Einschränkung. Wie Abb. 14

zeigt, kann ich den Weltpunkt Pi nur gleich-

zeitig mit sich ereignen lassen, wenn er inner-

halb des Winkelraumes liegt, der von der x-

Achse und der Lichtausbreitungsgeraden O A
gebildet wird, im andern Falle würden sich

nämlich für die t-Achse stärkere Neigungen
ergeben als 45", d. h. das zweite System
müßte sich mit Ueberlichtgeschwindigkeit fort-

^
pflanzen, was ausgeschlossen ist. Was heißt

es aber, daß P innerhalb des Winkelraumes
AOX liegen muß? Wenn jemand Pi von O
aus erreichen will, so n^uß er sich auf der

-4UK
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eigiiis

Wemi
finden,

Weltlinie OPj bewegen, d. li. mit einer Geschwindigkeit, die

größer ist als die Lichtgeschwindigkeit. Pi kann also kein Br-

sein, das als Wirkung von aufgefaßt werden kann,

letzteres der Fall wäre, könnte man auch leicht Systeme
in denen sich Ursache und Wirkung im ersten System im

zweiten in das Gegenteil verkehren. Wie
Abb. 15 zeigt, ist das ebenfalls nur bei

Ereignissen möglich, die im ersten System
nicht in der Abhängigkeit von Ursache und

Wirkung zueinander stehen, d. h. nicht mit

Unterlichtgeschwindigkeit voneinander er-

reicht werden können.

Auf Grund dieser Betrachtungen ist

es wichtig einzusehen, daß nicht wie in der
alten Mechanik die Zukunft von der Ver-

gangenheit einfach durch eine Gerade bzw.
Ebene senkrecht zur t-Achse getrennt wird.

Wir haben vielmehr die in der Abb. 16

dargestellten Verhältnisse, wo wir wiederum
immer nur in derersten räumlichen Dimension

Wenn ein bestimmtes Ereignis ist, so wird

AU15.

X bleiben wollen.

die Zukunft von der Vergangenheit zwar durch die

getrennt, wir müssen aber bei der

Zukunft zunächst die aktive Zukunft

(die Folgen des Ereignisses) von einem
Gebiet unterscheiden, in dem „andere
Ursachen derselben Folgen" liegen, die

aber auf das Ereignis selbst weder
Einfluß haben noch von ihm beeinflußt

werden können. Ebenso steht es mit

der Vergangenheit. Die passive Ver-

gangenheit(dieUrsachen des Ereignisses)
sind getrennt von einem Gebiet der

Vergangenheit, in dem „andere Folgen
derselben Ursachen" liegen, die aber
mit dem betrachteten Ereignis in keinem

Zusammenhang stehen. Die Weltlinie

durch eine beliebige Kurve, etwa 1,

Gerade t=0

paktiv*
Vtr«

AUU.
des Ereignisses selbst ist

die aus der passiven Ver-

gangenheit in die aktive Zukunft hineinragt, dargestellt.

Mit Hülfe dieser graphischen Darstellung können wir auch
die Frage beantworten, ob die Lorentz-Kontraktion und die Zeit-

dilatation tatsächlich oder nur scheinbar erfolgen. Wie aus der

Abb. 17 ersichtlich ist, stellt ein im x, t-System ruhender Stab
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wir beispielsweise die Masse von 1 Kilogramm, so ergibt sich

folgender Wert:

1J^.^_ . c- = 9200 Billionen mkg --- 21,6 Billionen Kalorien,
g

Nimmt man an, daß die Steinkohle pro kg 7200 Kalorien besitzt,
so würde die Masse von 1 Gramm mit 3000 Tonnen Kohle
identisch sein. Wichtiger als diese Zahlen ist die aus den obigen
Formeln folgende Tatsache, daß die Energie gleichzeitig Masse
besitzt, und daß die Masse und die Energie von der Geschwindigkeit
abhängig sind. Masse ist lediglich eine Erscheinungsform der

Energie. Wird die Geschwindigkeit gleich der Lichtgeschwindigkeit,
so folgt aus obiger Formel, daß die Energie unendlich groß wird.

11. Die Beziehungen zur klassischen Mechanik.

Man könnte nun meinen, daß bei den wichtigen Folgerungen,
die wir aus der Theorie gezogen haben, man schon lange auf

diese in der Physik durch die Beobachtungen aufmerksam ge-
worden sein müßte. Wenn wir uns aber die Formeln ansehen, so

erkennen wir, daß die quantitativen Abweichungen immer nur
2

von der Größenordnung
—

^~ sind, und da c- jedenfalls gegen-

über dem unbekannten v- sehr groß ist, so kann von einer

leicht lujrkbaren Abweichung nicht gesprochen werden. In einer

akustischen Welt, wo c den Wert der Schallgeschwindigkeit
haben würde, hätte man sicher die Inkonsequenzen, derer sich

die Physik schuldig gemacht hat, lange bemerkt. Andererseits

geht die klassische Mechanik, wie ein Vergleich der Galilei-Trans-

formation mit der von Lorentz zeigt, ohne weiteres aus der Re-

lativitätsphysik hervor, wenn man für c den Wert unendlich ein-

setzt. Die klassische Mechanik operierte so, als wenn die Licht-

geschwindigkeit unendlich groß wäre. Dann ist in der Tat auch
in der Optik das Relativitätsprinzip erfüllt und außerdem könnte
der Michelsonsche Versuch nicht positiv ausfallen. Denn c— y
oder c-pv wären unendlich, die Lichtgeschwindigkeit wäre in

allen Systemen dieselbe, aber leider hat ja die Lichtgeschwindigkeit
einen endlichen Wert, und daher müssen wir uns den Folgerungen
der Relativitätstheorie fügen. Jetzt können wir es auch verstehen,
weshalb es keine größeren Geschwindigkeiten als Lichtgeschwindig-
keit geben kann. Diese ist bei unserer Zeitregulierung benutzt

und lediglich unsere Definition der Zeitregulierung bringt diese

Beschränkung auf endliche Werte mit sich, ähnlich wie unsere

gewöhnlicjie Definition der Temperatur keine Werte zuläßt, die
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unter dem absoluten Nullpunkt liegen. Bei einer anderen Zeit-

definition wäre der Wert 300 000 gleichbedeutend mit unendlich

gewesen. Wir werden später noch sehen, daß auch hinsichtlich

der Raumdimensionen ein Unterschied zwischen Unendlich und
Unerreichbar bezw. Unbegrenzt gemacht werden muß. Ebenso
wie es einen endlichen aber unbegrenzten Raum gibt, so gibt es

auch endliche aber trotzdem unerreichbare Geschwindigkeiten.

12. Die Verallgemeinerung des Relativitätsprinzips.

Wir hatten bisher immer nur von gradlinig gleichförmig
zueinander bewegten Bezugssystemen gesprochen und gesehen,
daß diese gleichberechtigt sind. Einstein hat nun in den letzten

Jahren eine Ausdehnung des Relativitätsprinzips auf alle Arten

von Bewegungen versucht. Das scheint zunächst nicht möglich
zu sein. Denn wenn ich in meinem Eisenbahnzuge auch von

einer gradlinig gleichförmigen Bewegung desselben nichts merke
und diese durch keinerlei Experimente feststellen kann, so merke
ich doch sofort eine beschleunigte oder Drehbewegung. Erstere

kann ich an dem Verhalten der im Zuge ruhenden Gegenstände
letztere würde ich z. B. an der Veränderung der

innerhalb des Zuges sofort feststellen können,

denn auch der Meinung, daß die Rotationen
können. Sein be-

und lasse ihn

Rotationen im

Obgleich sich

Wasser, das

konstatieren,
Pendelebene
Newton war
den Beweis für den absoluten Raum bringen
rühmtes Experiment ist durch Abb. 18

veranschaulicht. Drille ich den Faden, an

dem das mit Wasser gefüllte Glas hängt,
dann los, so führt das Glas
Sinne der Pfeilrichtung aus.

das Glas in bezug auf das

die Drehung zunächst noch
nicht mitmacht, sofort bewegt, bewahrt das

Wasser die horizontale Oberfläche und erst

allmählich, wenn das Wasser vom Glase

mitgerissen wird, bildet sich in Folge der

Zentrifugalkräfte die bekannte paraboloi-
dische Wasseroberfläche aus. Also: Die

relative Drehung des Glases relativ zum
Wasser bewirkt keine Zentrifugalkräfte, erst

die Drehung des Wassers zum ab.soluten

Raum zeigt mir das Auftreten dieser Kräfte

nicht sagen, das Wasser befindet sich in

YZZZZZZZVZZZZZ21

.3

4u18
an. Ich kann also

Ruhe und die Erde
dreht sich, ebensowenig wie ich in einem anfahrenden Eisenbahnzug
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sagen kann, der Zug ruht und die Außenwelt erhält eine be-

schleunigte Bewegung, denn daß der Zug nicht ruht, mertce ich

an den auftretenden Kräften, während in der Umgebung alles

unverändert bleibt. Mach hat nun schon darauf hingewiesen,
daß das Newtonsche Experiment in Wirklichkeit nichts beweist.

Wenn nur das Glas dick genug ist, könnten schon durch die

relative Bewegung des Glases in bezug auf das Wasser Zen-

trifugalkräfte ausgelöst werden. Er behauptete, daß ich ebensogut
sagen könnte, das Wasser ruht und die Massen des Fixstern-

himmels rotieren um das Wasser.

Um diese Behauptung zu beweisen, haben die Brüder Fried-

länder folgendes Experiment gemacht. Sie nahmen ein Schv^ung-
rad von großen Dimensionen, das in einer vertikalen Ebene rotierte.

Seitwärts wurde eine Drehwage aufgestellt. Wenn dann die

Massen des rotierenden Schwungrades in derUmgebungZentrifugal-
kräfte auslösen sollen, so muß die Drehwage sich so einstellen,

daß jedes Teilchen sich möglichst von der Achse zu entfernen

sucht, d. h. die Wage muß sich mit der Rotationsebene parallel
stellen. Diese Versuche haben aber ein negatives Ergebnis gehabt.
Man darf jedoch daraus nicht schließen, daß die Machsche Be-

hauptung unrichtig ist. Die Massen des Schwungrades sind

nämlich noch immer gering im Verhältnis zu den ruhenden Massen
der Gebäude, der Erde und des Fixsternhimmels.

Nehme ich an, ich hätte einen Körper allein in der Welt
und dieser rotierte um eine Achse, so könnte ich seine Rotati; );i

auf keine andere Weise feststellen, als durch das Auftreten der

Zentrifugalkräfte, denn ich könnte ja, wenn keinerlei andere Körper
in der Welt vorhanden sind, eine Drehung garnicht konstatieren.

In bezug auf welches System soll sich ein Körper drehen, wenn
gar kein anderes System vorhanden ist ? Einstein hat mit Recht

hervorgehoben, daß der absolute Raum geradezu „spiritistischen"
Charakter trägt, indem er lediglich zur Erklärung der Zentrifugal-
kräfte herangezogen v/ird, sonst aber keinerlei beobachtbare

Eigenschaften hat. Einstein hat infolgedessen versucht, mit dem
absoluten Raum ganz zu brechen und das Relativitütsprinzip auch
auf beschleunigte Bewegungen auszudehnen. Wenn ein Körper
rotiert oder sich beschleunigt bewegt, so soll ich auch sagen
köfuien, der Körper ruht und die Umgebung rotiert bezw. der

Körper ruht und die Umgebung bewegt sich. Wie ist das möglich?

Zu einer Lösung dieser Frage kommt Einstein durch folgendes

Gedankenexperiment, das den Namen des Einsteinschen Coupe-
Experiments führt. In einem geschlossenen Kasten, dem Einstein-
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sehen Coupe, befindet sich ein Physiker, und dieser bemerkt,
daß in dem Kasten Gegenstände, die nicht an den Wänden be-

festigt sind, von der Decke zum Fußboden in beschleunigter

Bewegung sich befinden. Wie kann er diese Erscheinung deuten?
Finstein antwortet Folgendes: Entweder befindet sich unter dem
Fußboden des Kastens ein Weltkörper, der die Gegenstände des

Kastens anzieht, so daß diese in einem Schwerefeld g!eichf()rmig

beschleunigt herabfallen, oder an dem oberen Ende meines Kastens
befindet sich ein Seil und an diesem Seil wird der Kasten mit

beschleunigter Bewegung aufwärts gezogen. Sind diese beiden

Deutungsversuche tatsächlich identisch? Das wäre der Fall,

wenn alle Körper in einem Schwerefeld gleich schnell fallen.

Wenn nämlich mein Kasten beschleunigt nach oben gezogen wird,
ohne daß ein Schwerefeld vorhanden ist, so ist klar, daß alle

KcM'per, die ich loslasse, mit genau gleicher Beschleunigung, nämlich
der desKastens,sich in derRichtung des Fußbodens bewegen. Würden
aber durch ein Schwerefeld etwa ein Stück Blei und ein Stück
Alluminium mit verschiedener Beschleunigung angezogen, so

würde der Physiker in dem Kasten eine Möglichkeit haben fest-

zustellen, ob die eine oder die andere Deutung richtig ist. Nun
fallen alle Körper im luftleeren Raum gleich schnell, und diese

Gleichheit der trägen und schweren Masse ist dutch die Versuche
des Ungarn Eötvös mit außergewöhnlicher Genauigkeit festgestellt.
Einstein stellt daher sein sogenanntes Aequlvalenzprinzip auf,

nach dem gleichförmig beschleunigte Bewegungen oder Auftreten

von Gravitationsfeldern gleichbedeutend sind. Dieses Aequlvalenz-
prinzip ermöglicht eine Ausdehnung des Relativitätsprinzips auf

beliebige Bewegungen, indem es eine andere Deutung der be-

schleunigten Bewegungen zuläßt. Eine beschleunigte Bewegung
kami durch ein Gravitationsfeld und umgekehrt dieses durch ein

beschleunigtes Bezugssystem ersetzt werden. Wenn also der

Fisenbahnzug sich in Bewegung setzt, so kann ich auch sagen,
der Zug ruht und die umgebenden Massen üben Zentrifugalkräfte

infolge ihrer Gravitationsfelder aus. Während bei Galilei Ruhe
um\ gleichförmige Bewegung gleichbedeutend sind, wird JL-tzt die

AequivalenzvonTrägheits- und Gravitationswirkungausgesprochen.
Daß für die Trägheitswirkungen und für die Gravitationswirkungen
eine und dieselbe physikalische Konstante g maßgebend ist, war
früher wohl beachtet aber nie in konsequenter Weise durch-
dacht worden.

13. Die nichteuklidische Geometrie.
Zur strengen Dmchführung der allgemeinen Relativitäts-

theorie, die sich im Gegensatz zu der speziellen mit ganz beliebigen
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Bewegungen beschäftigt, sind nun aber nocii einige Verallge-

meinerungen unserer physikalischen Weltanschauung n()tig, die

sich namentlich auf unsere Raumanschauung beziehen. Habe ich

zwei ebene parallele Kreisscheiben, die sich übereinander befinden

und in gegenseitiger Rotation zueinander begriffen sind, so be-

hauptet Einstein, daß man sowohl die eine als auch die andere

als ruhend auffassen kann und daß ich die Zentrifugalkräfte als

hervorgerufen durch ein veränderliches Gravitationsfeld deuten

kann. Dabei muß aber noch eine Einschränkung über die Maß-

bestimmungen des Raumes gemacht werden. Betrachte ich von
der als ruhend angenommenen Scheibe aus einen Meterstab, der

sich auf der bewegten Scheibe befindet, so weiß ich, daß er,

wenn ich ihn in Richtung der Peripherie anlege, je nach der

Geschwindigkeit der Scheibe verschieden verkürzt erscheint. Da
nun die äußeren Teile der Scheibe eine größere Geschwindigkeit
haben als die inneren, so erscheint ein Meterstab verschiedene

Länge zu haben je nach dem Ort, an dem er sich befindet. Die
Gravitationsfelder führen demnach dazu, dem Raum verschiedene

Maßbestimmungen aufzuprägen. Wie kann ich mir das erklären?

Nehmen wir an, es gäbe auf der Erde Flächenwesen von
zwei Dimensionen, die Geometrie treiben. Wenn sie Dreiecke

ausmessen, so würden sie zu der Ueberzeugung kommen, daß die

Winkelsumme ihrer Dreiecke auf der Erde größer ist, als zwei

Rechte, da sie es ja mit sphärischen Dreiecken zu tun haben.
Wenn sie eine ihrer Meinung nach gerade Linie ziehen, so würden
sie sehen, daß diese gerade Linie, lange genug verfolgt, zum
Anfangspunkt wieder zurückkehrt. Eine Vorstellung von der

Krümmung der Erde würden sie aber nicht haben können, da ihnen

ja die Vorstellung der dritten Dimension fehlt. Ihre geraden
Linien (die Kreise) würden unbegrenzt aber endlich sein. Und
wenn nun auf der Fläche, auf der sie leben, die Krümmung
überall verschieden wäre, so würden sich die Dreiecke, die sie

zeichnen, nicht ohne Gestaltsveränderung verschieben lassen, das
wäre aber gleichbedeutend mit einer Aenderung des Maßstabes
von Ort zu Ort. Denn wenn etwa an bestimmten Stellen der

Erde durch irgend welche Wärmeeinflüsse die Maßstäbe sich

sämtlich verlängerten, so könnte man diese Aenderung durch eine

Krümmungsänderung erklären. Genau wie eine Fläche von 2

Dimensionen nicht notv,/endig eben zu sein braucht, so braucht

auch ein Raum von 3 Dimensionen nicht notwendig die Gestalt

zu haben, die wir als „euklidisch" bezeichnen. Ebenso wie wir
die Krümmung einer Fläche uns nur vorstellen können, wenn wir
die dritte Dimension zur Hülfe nehmen, so kann auch die
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„Krümmiiii.u" unseres Raiiiiics nur vorgestellt werden, wenn wir

die Aiiscliammg einer vierten Dimension hätten. Messen kimnten

wir aber die Krümmung durch die soeben angegebene Aenderung

der Mal5stäbe. Wir kommen auf diese Weise dazu, der Welt

„nichteuklidischen" Charater zuzuschreiben. Die Krümmungs-
verhältnisse und damit die Maßbestimmungen ändern sich von

Ort zu Ort je nach den Gravitationsfeldern, die durch die vor-

liandenen Massen hervorgerufen werden. Während in der

euklidischen Welt, wie Formel (1) zeigt, das Linienelement sich

von Ort zu Ort nicht ändert, gilt hier die Formel: ds---gidx--f

g.dxdy-}-g;;dy-, wo die g die Gravitationspotentiale sind. Die Raum-

zeitwelt ist vierdimensional, und die Maßbestimmungen richten

sich nach der Materie. Auf diese Weise verschmelzen Raum,

Zeit und Materie zu einer Einheit, und man kommt zu folgender

Verallgemeinerung des Galileischen Trägheitsprinzips: Jeder Körper

bewegt sich unter dem Einfluß von Trägheit und Schwere auf

einer geodätischen Linie der Raum-Zeit -Welt. Dabei ist unter

einer geodätischen Linie die kürzeste Linie in dem entsprechend

gekrümmten Raum verstanden, wie z. B. auf der Kugel die Kreise

usw. Auf diese Weise kommt man zu einer Erklärung der

Gravitationswirkungen, wie sie früher nicht geahnt wurde. Die

sonderbare Kraft, die beispielsweise von der Sonne ausgeht und

die Erde anzieht, ist einfach dadurch erklärt, daß die Erde in

dem Gravitationsfeld der Sonne und den durch dieses Feld her-

vorgerufenen Raumkrümmungen infolge des verallgemeinerten

Trägheitsprinzips die geradeste Bahn, d. h. die bekannte Ellipse,

beschreibt. Wir müssen uns den Raum vorstellen, wie eine

Gebirgslandschaft. Von Punkt zu Punkt ändert sich die Krümmung,
in der Nähe großer Massen ist sie besonders groß, in weiter

Entfernung von ihnen geringer.

14. Die Beweise für die Relativitätstheorie.

Wie bereits anfangs hervorgehoben wurde, besteht die

hauptsächlichste Bedeutung der Relativitätstheorie in der kon-

sequenten Durchführung der physikalischen Grundanschauungwi.

Sie bedarf daher kaum der Beweise, müßte vielmehr im Gegwi-
teil verlangen, daß ihr Fehler oder Inkonsequenz nachgewiesen

würden. Wegen der wichtigen Folgerungen aus der Theorie ist

es aber von Bedeutung, daß gerade die allgemeine Relativitäts-

theorie, die zu den eigenartigsten Folgerungen führte, physikalische

Ereignisse vorausgesagt hat, die wenigstens zum Teil durch das

Experiment bestätigt sind.
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Denken wir uns noch einmal das Einsteinsche Coupe und
setzen voraus, dal^ es unmöglich sein soll zu konstatieren, ob

sich das Coupe in beschleunigter Bewegung oder in Ruhe, aber

in einem Gravitationsfeld, befindet. Auch hier könnten wir,

ähnlich wie bei der Erweiterung des klassischen Relativitäts-

prinzips auf die Optik, ein Experiment angeben, daß uns sofort

über den Bewegungszustand Aufklärung geben könnte. Lassen

wir nämlich auf der einen Seite des Coupes einen Lichtstrahl

eintreten, so müßte dieser, falls sich der Kasten in Ruhe befindet,

sich gradlinig ausbreiten. Ist aber der Kasten in beschleunigter

Bewegung, so müßte der Lichtstrahl eine krumme Linie sein.

Soll ein Unterschied nicht wahrgenommen werden können, so

muß man verlangen, daß der Lichtstrahl im Gravitationsfeld von

seiner geraden Bahn in derselben Weise abgelenkt wird. Diese

Ablenkung der Lichtstrahlen im Gravitationsfeld ist bekanntlich

bei der letzten Sonnenfinsternis festgestellt. Der von Einstein

errechnete Betrag von 1,7 Bogensekunden ist durch das Experiment
bestätigt worden. Die Ablenkung ist gleichbedeutend mit einer

Gesrchwindigkeitsänderung. In der allgemeinen Relativitätstheorie

ist also die Lichtgeschwindigkeit nicht konstant. Der Satz, daß

sie nicht überschritten werden kann, bleibt aber bestehen. Eine

weitere Bestätigung hat die Theorie durch Berechnung der Perihel-

bewegung des Merkur erfahren. Nach den Keplerschen Gesetzen

beschreiben die Planeten Ellipsen um die Sonne, in deren einem

Brennpunkt die Sonne steht. Die Ellipse selbst liegt in bezug
auf den Fixsternhimmel fest. Beim Merkur hat sich aber ergeben,
daß die ganze Ellipse sich in der Richtung der Bahnbewegung
herumdreht. Und zwar verschiebt sich der sonnennächste Punkt,
das Perihel, um 43 Bogensekunden im Jahrhundert. Auch diese

Bewegung läßt sich auf Grund des Einsteinschen Gravitations-

gesetzes errechnen.

Ferner wird durch die Relativitätstheorie eine Abhängigkeit
des Uhrenganges von den Gravitationspotentialen vorausgesagt.
Als eine solche Uhr können wir jeden periodischen Vorgang an-

sehen, z.B. auch die Aussendung des Lichts in Folge der Elektronen-

bewegung im Atom, die Lichtfrequenz müßte sich also mit dem
Gravitationsfeld ändern, und diese Änderung ist tatsächlich durch

die Rotverschiebung der Spektrallinien auf der Sonne nachgewiesen.
Auch der von der Theorie errechnete Dopplereffekt bei Bewegung
senkrecht zur Lichtquelle soll durch Experimente bestätigt sein.

Eine wichtige Folgerung der Theorie harrt aber noch der

Bestätigung. Wenn, wie wir gesehen haben, die Welt überall

verschiedenes Krümmungsmaß hat, so läßt sich für die Gesamtheit
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.Endlich"
mehrfach

der Fixsternwelt ein mittleres Krümmungsniaß errechnen. Der

gesamte Raum hat daher nichteuklidischen Charakter und zwar
errechnet sich der Durchmesser der Welt zu rund 100 Millionen

Lichtjahren, die Schwere der Welt zu 10^^ Gramm, das sind

eine Billion Sonnen. Die Länge dieser endlichen aber unbegrenzten
Welt würde etwa den 10 000 fachen Betrag unserer Milchstraße

ausmachen. Dabei darf man sich nicht an der Bezeichnung „endlich"
stoßen und fragen, was denn hinter dem Ende liegt. ,

ist nicht gleichbedeutend mit „begrenzt", wie schon
betont wurde und wie auch aus der

Abb. 19 hervorgeht. Projiziere ich

die Kugel von C aus auf die Ebene
und denke mir ein Wesen, daß sich

auf dem Kreise von A über B nach
C und über D wieder nach A bewegt,
so würde das „projizierte" Wesen
auf der Geraden die unendliche'

Gerade durchlaufen. Ebenso wie
es größere Geschwindigkeiten als die

Lichtgeschwindigkeit nicht gibt,indem
bei der Lichtgeschwindigkeit die

Masse unendlich groß wird, oder
wie es niedrigere Temperaturen als

auch die endlichen Geraden bei einem anderen Maßstab eme un-
endliche Länge haben. Für diese letzten Folgerungen fehlt aber,
wie gesagt, noch der Beweis. Die Astronomie ist aber dabei,
auch diese Arbeit in Angriff zu nehmen.

-273° nicht gibt, so würden

Jpm^
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