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1. Introduction

Considerable progress has been made during the last decade in the calculation of survival 
probalilities using the recoveries of dead birds by the introduction of maximum likelihood 
techniques.

Depending on their basic assumptions, there are generally speaking three main types 
of models used in estimating the survival rates.
These types contain:
1. a constant survival rate. In these models survival is considered to be independent of age 
and calendar year.
2. a calendar-year dependent survival rate. In these models survival is considered to be 
independent of age, but may vary with calendar year.
3. an age-dependent survival rate. In these models survival is thought to be independent 
of calendar year but may vary with age.

These types are often used in combination. For instance, in models of age-dependent 
survival rates, survival ist mostly considered to be constant from a certain age onward. 
BROWNIE (1973, cited in ANDERSON 1975) and JOHNSON (1974) have brought age 
dependency in a calendar-year dependent model using birds ringed at different ages.

The estimation of constant survival rates has been solved satisfactory. LACK’S (1943) 
estimate, originating from a deterministic life table, has been shown to be a maximum 
likelihood estimate if all birds are dead at the end of the observations (HALDANE 1955). 
HALDANE extended this estimate to incomplete data with the help of maximum likelihood 
techniques, which result was generalized by SEBER (1972, 1973).

The problem of the estimation of calendar-year dependent survival rates has been solved 
by SEBER (1970, 1973). For this estimate the numbers ringed in each year are needed; this 
is in contrast with the estimation of the rate of constant survival.

The estimation of age-dependent survival rates remains a problem. Since it is likely 
that survival of birds varies not only with calendar year but also with age, it is of paramount 
importance that satisfactory methods become available for its estimation. This paper is 
intended to give a contribution to this problem.

A second pending problem is the estimation of mortality rates due to different causes of 
death. The approach of CHIANG (1961), intended for human populations, can not be used 
for the recoveries of dead birds. The different (uneven) reporting probabilities of birds dying 
by different causes makes this problem fare more difficult to solve. A number of authors, 
working on game birds, estimated the rate of hunting mortality separately by making use of 
independently obtained estimates of the hunting reporting probabilities (ANDERSON 1975, 
GEIS & ATWOOD 1961, HENNY & BURNHAM 1976, MARTINSON 1966, MARTINSON & 
McGANN 1966, TOMLINSON 1968). Such estimates are not available for most birds and are 
difficult to obtain. Hence, this method has no general application. In the present paper it will 
be shown that the solution of this problem, apart from its own importance for the under­
standing of the population dynamics of birds, is essential for the estimation of age-dependent 
survival rates.



2. Age-dependent survival rates without a distinction between causes of death

The general model for the expected number of recoveries in a certain year after ringing 
used to obtain survival estimates is given in appendix 1:(1).

The existence of age-dependent survival is a more complicated assumption than a 
constant survival since more parameters are involved. For that reason, if estimates of age- 
dependent survival rates do not give a significant better fit to the observed recoveries than a 
constant one, the latter assumption has to be preferred. Therefore, in models of age-depen­
dent survival rates, the rate of survival is generally assumed to be constant from a certain 
age onward. This age can be estimated with a 2 —test.

Age-dependent survival rates can be estimated with the method of CORMACK (1970). 
For this method the numbers ringed yearly are needed. Since these numbers are not easely 
obtainable from the files of the European ringing administration centres, there is need for a 
method to estimate age-dependent survival rates without making use of them. If the reporting 
probability (this is the probability that a dead bird will be found and reported to the admini­
stration centre) is assumed to be constant the equations (4) and (5) of appendix 1 can be used. 
These equations have been applied to estimate age-dependent survival rates of the Coot 
(Fulica atra)ringed as pullus in The Netherlands (Table 1). For reasons of comparison the 
recoveries are divided into two groups, »shot« and »found dead«. The table shows that for 
the »shot« recoveries the survival rate is dependent on age, while this is not the case for the 
group found dead. This can be seen both from the result of the #2-test and from the overlap 
of the uncertainties of the estimates of the first year and subsequent years. The most remar­
kable feature of the table is the large difference between the estimates of the first year survi­
val rate of the two groups. This difference can not be explained by the uncertainties of the 
estimates, as given by their standard deviations. Since both are estimates of the survival rate 
in the population as a whole, these estimates are clearly biased. Such differences between 
estimates of survival rates from »shot« birds and birds »found dead« are a common feature 
of many birds if we calculate both estimates.

The conclusion from these findings is that age-dependent survival rates estimated in this 
way are biased.

The reasons can be found in the basic assumptions of the model. Birds die of many 
causes, and each cause brings about a different risk to die. One or more of these risks might 
be age dependent. It is unlikely that they are age dependent all in exactly the same way. This 
simply means that one cause of death is more important in youth than another. For instance, 
it is likely that in many birds the young individuals are more susceptable for shooting than 
older ones.

Thishas the consequence that when we consideronly onecause of death, itsshare in the total 
mortality is likely to decrease or increase with age. For that reason a selection of only »shot« 
birds as we made in our example of the Coot is not likely to be representative for the sequence 
of the number of death for the population as a whole, since its share varies with age. The same 
argument holds for the birds found dead. The conclusion from these considerations is that 
it is incorrect to estimate age-dependent survival from a selection of recoveries and that such 
a selection leads to a biased estimate.

However, what happens if we do not make such a selection? The probability to be re­
ported depends on the cause of death. For instance, it is far more likely that a shot bird will be 
reported than a bird hit by an aeroplane. Even if we assume that for each cause of death the 
probability to be reported is independent of age, the total probability to be reported for a 
mixed lot of dead birds is dependent on age, since the composition of the causes of death 
depends on age. The conclusion from these considerations is that if age-dependent survival



Table 1. Survival of the Coot (Fulica atra)
Ringed as pullus in the Netherlands 1934-1973, recovered up to 1973-74. The year starts at the mean 
ringing date (day 173). The recoveries before the starting date in the first year of birds ringed earlier are 
included. For the selection of »shot« and »found dead« see PERDECK in this issue. For calculations see 
appendix 1, equations (4) and (5).

age groups survival
P value X 2
constant
survival

all ages 
together

0.30
S.D. = 0.04 <0.001

shot 
N = 93

11* year 0.21
S.D. = 0.07

later years 0.75
S.D. = 0.13 0.23

all ages 
together

0.69
S.D. = 0.04 0.26

found 
dead 
N = 138

ISi year 0.68
S.D. = 0.06

leater years 0.78
S.D. = 0.07 0.76

is estimated from a mixed lot of recoveries the assumption of a constant reporting probability 
is incorrect and the estimate is biased. So, a model with a constant reporting probability and 
without a distinction between causes of death leads to biased estimates of age-dependent 
survival.

3. Age-dependent survival rates with a distinction between causes of death

The main difficultly in the last section appeared to lie in the fact that there is more than 
one cause of death, each with its own reporting probability. Let us suppose for the sake of 
simplicity that we have only two causes of death (A and B). For instance shooting as one cause 
and as a second cause the circumstances that produce the recoveries labelled as »found dead«. 
This simply means that a part of the birds that die in a certain year after ringing did so from 
cause A and that the remaining dead birds died from cause B. We assume for each cause a 
different reporting probability, each independent of age. This assumption might be invalidated 
if young individuals stay at other places than old ones and the reporting probabilities vary 
between places. If the manner of recovery represents a mixed lot of causes of death, it seems 
also unlikely that their reporting probability is independent af age. Despite this, the assump­
tion of a constant reporting probability seems nearer to the truth for a selection than for all 
recoveries together.



P ro b a b ility
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Fig. 1. Estimates of the parameters of age-dependent survival with two causes of death (»shot« and 
»found dead« of the Coot (Fulica atra). Assumed values of the hunting reporting probability 
along the absis. Ringing and recovery data are used of pulli ringed 1958-73 and recovered up to 1973-74. 
Survival probability is assumed constant from the second year onward. For calculations see appendix 2.

A model of age-dependent survival with two causes of death based on these assumptions 
is given in appendix 2. In this model the survival is thought to be independent of age from a 
certain age onward. Only this constant survival can be estimated separately. This is, however, 
not possible for the other parameters, except when one of them is known from other sources, 
e.g. the hunting reporting probability as estimated from questionaires and reward systems.

To get some idea about the interdependence of the estimates for the Coot we have given 
values to the hunting-reporting probability and estimated the other parameters subsequently. 
For this purpose we have used the recoveries of birds ringed from 1958 onward, because 
for the earlier ringed recoveries the numbers ringed were not available. The results are given 
in Fig. 1. This figure shows that the estimate of the survival rate in subsequent years assumed 
to be independent of age is independent of the other parameters. The estimate of the first 
year survival rate is also rather independent of the assumed value of the hunting-reporting 
probability (reporting prob.shot) if the latter is higher than about 0.25. Thismeansthat if we 
have reasons to believe that this is the case, we have rather good estimates of the survival 
rates of this species. However, in the case of the Coot we have no reasons for such a suppo­
sition.



The estimate of the hunting part of mortality in the first year is highly dependent on the 
assumed value of the hunting-reporting probability. In subsequent years this value is less 
important for the solution. This means that we need a rather precise estimate of the hunting- 
reporting probability to estimate the contribution of hunting to mortality.

The conclusion from these findings is that the inclusion of two different causes of death 
with two different reporting probabilities in an age-dependent model gives no solution to 
the problem of age-dependent survival, unless we have estimates of at least one of the re­
maining paramenters from an independent source.

4. Calendar-year dependent survival rates with a distinction between causes of death

Up till now we have considered age-dependent survival rates irrespective of the variation 
in survival from one calendar year to the other.

Let us now assume that survival rates are independent of age but depend on calendar 
year. We meet this situation when adult birds of unknown age are ringed. SEBER (1970, 
1973) showed that in that case the survival rates can be estimated for each calendar year 
separately. If we suppose that there is one cause of death operating in the population the 
reporting probability for each separate year can also be estimated.

Let us assume that there are two causes of death operating in the population and that 
the reporting probabilities connected with these two causes of death are constant. Then it 
seems possible to estimate for each separate year the survival probability for the population 
as a whole, the parts of the mortality rate due to each cause of death and the two reporting 
probabilities. This is shown in appendix 3: (9). This method has still to be tested out.

5. Concluding remarks

Maximum likelihood techniques as used in the present paper provide opportunities to 
analyse survival patterns in birds in much more detail than the still often used deterministic 
life-table techniques. Moreover, variances and covariances can be estimated, providing 
measures of accuracy not always available for conventioned life tabel estimates. A further 
advantage of maximum likelihood methods is that they make better use of the available data.

A maximum likelihood method for the estimation of age-dependent survival is presented 
in appendix 1: (4), (5). As usual, the reporting probability has been assumed to be constant. 
However, it is shown in the present paper that this assumption is incorrect. The overall re­
porting probability (no distinction between mortality categories) is dependent on age. Each 
mortality categorie has its own age dependency and reporting probability. This makes the 
overall reporting probability dependent on age. The greater the differences between the 
separate reporting probabilities are, the greater is the age dependency of the overall re­
porting probability. The difference between the separate reporting probabilities is especially 
large in the case of shooting as compared with other causes of death. Therfore, it can be 
expected that hunted species give biased estimates of age-dependent survival if the overall 
reporting probability is assumed to be constant. This conclusion is far-reaching since it inva­
lidates many hitherto made analyses. However, if shooting pressure is low, recoveries of 
birds died by causes other than shooting can still give reasonable estimates of the survival.

The problem arising from this age dependency of the overall reporting probability is 
not easy to overcome. The methods introduced by BROWNIE (1973, cited in ANDERSON 
1975) and JOHNSON (1974) solve the problem to some extent for those species of which 
individuals are ringed at different ages. However, many species are ringed at an unknown 
age, and/or at only one age class (pullus), thus defying this method. A possible solution for 
birds ringed as pullus is suggested in this paper (appendix 2). It has no general application,



since an independently obtained estimate of one of the parameters is needed. Unfortunately, 
such an estimate is generally lacking.

It would be of great interest to find a method for estimating survival from different causes 
of death. This seems possible if survival is considered to be independent of age, but dependent 
on calendar year, as shown in appendix 3: (9). However, in this case many parameters have 
to be estimated iteratively which takes much computer time. Another drawback is that the 
number of recoveries has to be large to obtain estimates of reasonable accuracy.
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7. Zusammenfassung

F e h le rm ö g lic h k e ite n  bei der B erech n u n g  a lte r s a b h ä n g ig e r  Ü b e r leb en sra ten  bei 
V ögeln  au fg ru n d  der W ied erfu n d e  b e r in g te r  V ögel.

1. Zwei voneinander abhängige Probleme werden behandelt: a) die Berechnung altersabhängiger Über­
lebensraten, b) die Berechnung der von verschiedenen Todesursachen abhängigen Mortalität.

2. Für die Berechnung der altersabhängigen Überlebensraten wurde eine Methode erarbeitet, die von den 
jährlichen Beringungszahlen unabhängig ist (Appendix 1: (4), (5)).

3. Es wird gezeigt, daß die meisten der gegenwärtig verwendeten Berechnungsmethoden einschließlich 
der oben erwähnten ungenaue Ergebnisse liefern, da für eine exakte Berechnung die Unterschiede in 
der Meldewahrscheinlichkeit zwischen verschiedenen Todesursachen in Rechnung gestellt werden 
müssen.

4. Wenn die Meldewahrscheinlichkeit einer Todesursache bekannt ist oder geschätzt werden kann und 
wenn angenommen wird, daß nur zwei verschiedene Todesursachen in einer Population wirksam 
sind, kann die in Appendix 2: (7) dargestellte Berechnungsmethode verwendet werden.

5. Für den Fall einer vom Kalenderjahr abhängigen Überlebensrate mit zwei verschiedenen Todes­
ursachen ist eine vielleicht brauchbare Berechnungsmethode für die jährliche Überlebensrate und den 
Anteil, den die beiden Todesursachen daran haben, in Appendix 3: (9) dargestellt. Dabei wird davon 
ausgegangen, daß die Meldewahrscheinlichkeit bei beiden Todesursachen konstant bleibt.
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Appendix 1. Age-dependent survival rates without distinction between causes of death.

The recoveries of dead birds form a set of mutually exclusive possibilities, recovered in year 1 after 
ringing, in year 2 etc. or not recovered at all. Therefore the numbers in these categories follow a multi­
nomial distribution (CHIANG 1960 a, b 1961, SEBER 1973).

Let us assume that the birds are ringed as pullus at the start of year i, the number of years after ringing 
j is than equal to age.
Let nj j i=  1,2.......... t j=  1,2.......... (t-i+1)
be the number of recoveries in year j after release at the start of year i. The number of observation years 
(t) is assumed to be equal to the number of years of release (t). R. birds are released at the start of year i. 

The basic recovery data can be represented as follows: 1
Year of Number Number recovered in successive years after ringing
release ringed 1 2 ...... ..... t-1 t Total recovered

1 R i n u n j i  ...... .....n i.t-i "Ft H|
2 r 2 n2 ,1 n? i  ...... ..... n2 ,t-1 h 2

t Rt nt, i
Total Vj V2 Vt-l Vt

H,

If no distinction is made between causes of death, which is identical with the assumption that there 
is only one cause of death, the expected number of the i*̂ 1 release in year j after release can be given by: 

J-1
E (n. . ) =R. A. ( 1 - $ . )  n

" U ' J J p=0 P
($0 = 1 ; i = 1 , 2 ............t ; j  = l , 2 , . , ( t - i + 1 ))



R. = number ringed at the start of year i

 ̂j  = reporting probability in year j after ringing (the reporting probability is the probability that a 
bird died in year j after ringing will be found and reported as such to the ringing administration 
centre).

$ . = probability that a bird survives year j after ringing, given that it is alive at the start of year j.

j - >

p = o  p 0 1 2  J * 1

CORMACK ( 1970) used this expectation to estimate age-dependent survival with maximum-likelihood 
techniques assuming all Aj to be equal (A j  = X) .Then X is not needed for the estimation of the survi­
vals. In that case the conditional multinomial distribution can be used (see SEBER 1973).

The joint conditional multinomial distribution of the{n. . }is / ({ n . .} I {H .}) =
U  U  '

t
IT

i = 1

H. !i
t- i+1

II n . . !
uj =1

1 - 4 ,
n. < 

i J ( 1 — 4> 2 ) 4*,
n. « i ,2

t -  i
0-4> . . )  n 4>

t _l +1  p=0 p
0.1 0.1 0.1

i , t - i + 1

( 2 )

t -  i t -  i+1
0 .  = ( i - 4>)  + ( i -4>, ) $ .  + — + 0-4> . , )  n 4- = i -  n 4>

1 ' 2 1 t_l+1 p=o p P=o p

V 1
The log L(ikelihood) can be written as follows:

t  t  - 1 t  t
log L= E V . 1 og (1 -<&.) + E E V log$ - E H .  logO. + const.

j  = 1 J p=1 q=p+1 ^
(3)

K i = l

k=l , 2 , ____, s - lThe parameters
are assumed to be dependent on age. From year s onward the survival rate is assumed to be constant. The 
latter parameter is called $ c .

Differentating (3) to <J\ and $ and equating the partial derivatives to zero to maximize log L gives
for : .

k t - i + 1

1 - $ .  1 =k+l  4>k k

. i i i  H • n <t> 
t_k+1 ' p=0 p

¡=1 t - ¡ +1 _
(i- n o )d>.

p=0 p k

=  0 (4)

and for (constant from years s after release):

t -  i

V.t
- E

j = s 1 - $

„ , .  u ,  „ , . H. (t-s-i+2) n 4>t (j-s) V. t - S + 1  I n P
-L + z - _____I.+ E ------  . , , P=Q =0

J=s $ i = 1
t - i+1^

1- n $
q=1 '

(5)

The equations (4) and (3) can be solved iteratively. Using the Newton-Raphson method, the last iteration 
gives directly an estimate of the asymptotic variances.

The assumption that 4> is constant from year s onward can be tested with a X 2_tcst on the column 
totals of year s and following years. We added the cells together in such a way that the expectation per cell 
becomes ^  3.



Appendix 2. Age dependent survival rates, two causes of death.
Assumed is again that the birds are ringed as pullus at the start of year i, the number of years j after release
is then equal to age.
Let n’j j i = 1 ,2 ,.........t j = 1,2 ,. . .  ,(t-i + 1) be the number of recoveries of category A (died
by cause A) reported in year j after release at the start of year i.
Let n”j j i=  1 ,2 ,.........t j=  1 ,2 ,.. . .,(t-i+ 1) be the number of recoveries of category B (died
by cause B) reported in year j after release at the start of year i. A and B are the only causes of death. The 
number of observation years (t) is assumed to be equal to the number of years of release (t). Rj birds are 
released at the start of year i.
The recovery data of category A can be represented by:

Year of Number Number recovered in successive years after ringing
release ringed 1 2 ............ .... t-1 t Total recovered

1 R i n’ U n’ 1,2 ............ ............ n’ l,t- l n’ l,t H’ l
2 r 2 n’2,l n'-> ............ ............ n’2 ,t - 1 H'2

t Rt n’t j  H’t
Total V’ ! V’2 ...........................  V’t_l V ,

The recovery data of category B can be represented by:
Year of Number Number recovered in successive years after ringing
release ringed 1 2 ............ t-1 t

1 Ri n” l , l n” 1,2 ............ ............ n” l,t-l n”t
2 r 2 n”2,l n 2 .2 ............ ............ n”2,t- 1

Total recovered
H” I
H”2

Rt
Total

n t,l 
V” i

H”t
V"2 V”t-l V”,

The expected number of recoveries of the i^  release in year j 
after release can be given by:

E ( n l j ) = R i A 'mj d-<î>ï) ÏÏ $ 

and
J p=0 p

(category A)

j-1
(category B)E(n! ' . )=R A" ( 1 - m. )  ( 1 - t . )  JI $

J J J p=0 P
A 1 = reporting probability of a bird died by cause A. This parameter is treated as a constant.
A 11 = reporting probability of a bird died by cause B. This parameter is treated as a constant.
m j  = the probability that a bird that died in year j after release, did so from cause A. (1 -mj) is the pro­

bability of a bird that died in year j after release, did so from cause B.
$ . = the probability for a bird to survive year j after release, given that it is alive at the start of that

J year( <t>0= l).
The joint probability of the n_! .=n ! . and the nV - = n . (i = i ,2 ,..  .,t j = 1 ,2 ,.. .,t-i+ 1) is pro­
portional to: 1J 1J ' J 1J



t
n

¡=1

n !  1 n ! '
(A ,m1 (1 -<i>1 ) } {A" (1 -m1 ) (1 - $ 1 ) }

n !  n'.'
x {X 'm2 (1 -<K2 ) 4-1 } ' ’ {X" (1-m2) ( 1 - $ 2 ) i »1 }

t - 1  n!

" „ V
\ , t - i  +1

p=0

X {X"(1-m ) ( 1 - *  ) n * } , ’ t " l+1 X K. '
p=0 r

(6 )

L.=R.-H!-H! 'i i i i
t - i  + 1 j - 1  t - i  + 1 j “ 1

K. = 1 -X ' £ (11.(1-$.) n $ - X" I ( 1 -m ) ( 1 - $ . )  n $
j=i J J P=o p j=1 J J p=0

The log L(ikelihood) can be written as follows:

t t t t
log L = Z V 1 ogA ' + Z V'.' log A" + I Vllog m. + Z V'.' log(l-m.)

j - i  J j - i  J j=> j j=i j

t t - i  t
+ £ (V '.+V '. ' )  lo g (1 - $  . ) + £ £ ( V ' + V " )  lo g$

j  = 1 J J J ] = 1 q=l +1 Q

+ Z L. log K. + const. 
¡=i 1 1

( 7)

In (7) $ is considered constant from year s onward ( $ c ). If we maximize log L iteratively to obtain 
ML estimates of the parameters, it seems that only $ c can be estimated. Estimates of the other para­
meters can not be obtained separately, unless one of them is known from some other source.

Appendix 3. Calendar-year dependent survival rates, two causes of death.

It is assumed that the birds are ringed as adults and that the survival rates are independent of age. Let 
us assume that the birds are ringed at the start of year i and that they can be recovered in calendar year
j after the start of the observations (j^. i). Let n’j j i = 1 ,2,........t j = i,i+ t,. . .  .,t be the number of
recoveries of category A reported in calendar year j of the birds released at the start of calendar year i.
Let n”j j i = 1,2,. . . .,t j = i, i-l-1..........t be the number of recoveries of category B reported
in calendar year j of the birds released at the start of calendar year i. The number of observation years (t) 
is assumed to be equal to the number of years of release (t). Let Rj be the number of birds released at the 
start of calendar year i.

The recovery data of category A can be represented by:



Year of Number Number recovered in successive calendar years
release ringed 1 1 ............. ............ t-1 t Total recovered

1 R , n’ u n’ i i ............. n 1 ,t-1 n’ l,t H’ l
2 R2 n’o i ............. ............ n’2,t-l n 2,t H’2

t Rt n’t,t H’t
Total V’ , V’? ............................... V’,- l V’t

The recovery data of category B can be represented by:

Year of Number Number recovered in successive calendar years
release ringed 1 2 .......................... t-1 t Total recovered

1 R i n” u n” 1,2 .......................... n” l,t n” l,t - 1 H” |
2 r 2 n”2 i .......................... n”2 ,t-1 n”2,t H”t

Rt
Total V” \ V"2. t-I

n t,t 
V’ t

H”t

The expected number of recoveries of the i1̂  release in calendar year i ( j^ i )  after the start of the obser­
vations can be given by:

j"1
E( n ! . ) =R. A' m. ( 1 - $  ) II $ (category A)

J p=0, i p
j - 1

E(n! ' . ) =R. A"  ( 1 - m . ) ( ! - * . )  n *_ (category B)

"U J
and

■ U J p=0, i
 ̂ ' = reporting probability of a bird died by cause A. This parameter is treated as a constant.

X 11 = reporting probability of a bird died by cause B. This parameter is treated as a constant.
m • = the probability that a bird died in calendar year j, did so from cause A. (1 -mj) is the probability

that a bird died in calendar year j, did so from cause B.
the probability for a bird to survive calendar year j, given that it is alive at the start of that
year ( <0 : 1).

The joint multinomial distribution of the { n ! } and the { n j'j } is proportional to:

{A' m. ( 1 . ) }I I
n: .I I

{A" (1-m.)(1-$.)}I I

U ' m i + ) ( 1-V i ) * . }n i . ! + 1 {V ( l - im.i + ) d - * . Al ) *. }1+1 I
n:1 , i + 1

t-1  n! t-1  nV L.
(A'm ( 1 - i  ) IT * }  K  {A" (1-m J  ( I - * )  II $ } 11 x K. ' 

1 1 p - 0 , i  P 1 £ p=0, i P



L . = R . -H 1 -H !'i i i i
t j - 1  t j - 1

K. =1 -À 1 E m. ( 1 - $  . ) n $ - A" E ( 1 - m . ) ( ! - $ . )  ÏÏ <P
j =i  j J p=0, i  p J=l p=0, \

The log L(ikelihood) can be written as follows:

log L= E V! logA' + -E V log A
j =i  J j=>

t t
+ Z V! log m. + Z V'.1 log(l-m.)

J - 1  J J j-1 J

+ Z (Vl+V!1 ) log(1-$.) 
j=1 J J J

t“ 1 t
+ E (Tl+T!1 ) log$. + E L . log K. + const. 

¡ = i  1 1 1 ¡=1 1 1
w

i t
T!= Z Z n 1

p=l q=i + 1 pq

i t
T!<= E E n"
1 p=1 q=i + 1 ^

Preliminary attemps have indicated that ML estimates of the parameters A 1. A ", and ^  (k =
1,2.....t) can be obtained by maximizing log L iteratively. However, variances and covariances arc large
ant it was found that in one of the three eases to try out the model one of the two \  \  reached the upper 
bound (one) of the range given to the estimate. This makes it doubtful whether the model has practical use.

Appendix 4. Variances and covariances.

The theory of maximum likelihood estimation (K E N D A LL. & S TU A R T 1967: 55) can be applied 
to determine the asymptotic distribution of the estimators. If the numbers ringed are large the joint 
estimators tend to a multivariate normal distribution with the true parameter values as means. The 
variance-covariance matrix is formed by inverting the matrix of the second partial derivatives of the log 
likelihood function, taking expectations and changing the sign of each element.
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