Vogelwarte 43, 2005: 171–178 © DO-G, IfV, MPG 2005

Eine dreijährige Feldstudie zum sichtbaren Frühjahrszug am Bodensee (Süddeutschland)

Georg F. J. Armbruster, Deborah Renz & Manuel Schweizer

Armbruster GJF, D Renz & M Schweizer: A three-years field study on visible diurnal spring migration at Lake Constance (southern Germany). Vogelwarte 43: 171–178.

We presently develop a data bank on visible diurnal spring migration. Data were collected in three spring periods (1984 – 1986) at an exposed observation point at the bank of Lake Constance (*Bodensee*, southern Germany). 831 observation hours were done in 194 days from beginning of March to beginning of May, each day from sunrise to late morning/midday. The project yielded 35,583 records of migrants, with a total number of 138,543 individuals in 96 species. The results from Lake Constance are briefly compared to a Dutch study (LWVT/SOVON 2002), particularly focusing on spring migration of forest birds. Moreover, the following points are addressed: median signals and phenology (with special emphasis on fourteen 'calendar' bird species and black kite *Milvus migrans*), migration behaviour of typical resident birds (for eurasian collared dove *Streptopelia decaocto*, carrion crow *Corvus corone corone* and house sparrow *Passer domesticus*), main migration heading (for penduline tit *Remiz pendulinus*, meadow pipit *Anthus pratensis* and wood lark *Lullula arborea*), and treecreepers *Certhia brachydactyla* as rare migrants. With a second, long-term investigation at Lake Constance putative changes in migration behaviour during the last decades could be detected. In the next step, we provide the final version of the database as open source, for free download from the Internet. This will allow other researchers an extension of comparative analyses, e.g. for a detailed evaluation of migration pattern and predominate weather conditions.

GFJA, DR & MS: Universität Basel, Department für Integrative Biologie, Abteilung Naturschutzbiologie, St. Johanns Vorstadt 10, CH - 4056 Basel, Schweiz, e-Mail: g.armbruster@unibas.ch, Webseite: http://pages.unibas.ch/dib/nlu/staff/ga

1. Einleitung

Kaum einem anderen Orientierungsverhalten wird schon so lange naturwissenschaftliche Beachtung geschenkt wie dem Vogelzug (Berthold & Gwinner 2003). In der Ornithologie kommen verschiedene Methoden zum Einsatz, um den Zugverlauf zu untersuchen. So ist der Herbstzug im süddeutschen und schweizerischen Raum mit Radar-Monitoring eingehend analysiert worden (Gehring 1967; Bruderer & Jenni 1990; Bruderer 1997). Feldornithologen, die ohne aufwändiges technisches Gerät ausgestattet sind, bevorzugen topographische 'hot spots', um den sichtbaren Tagzug zu erfassen. In manchen Ländern wurden dazu Dutzende von Beobachtungsstellen eingerichtet, z.B. während einer Langzeitstudie in den Niederlanden (LWVT/SOVON 2002). Ein Langzeit-Monitoring wurde bisher auch an anderen Orten durchgeführt, wie z.B. in den Schweizer Alpen, auf einem Plateau der Schwäbischen Alb (Süddeutschland) bzw. nahe Eriskirch am nördlichen Ufer des Bodensees (Dorka 1966; Bruderer 1967; Gatter 2000; Ornithologische Arbeitsgemeinschaft Bodensee 1998/1999). Alles in allem ist der spätsommerliche und herbstliche Wegzug über Mittel- und Westeuropa recht gut dokumentiert. Die Publikationsliste umfasst bereits Dutzende wissenschaftlicher Arbeiten.

Im Gegensatz dazu zeigt sich für den sichtbaren Heimzug ein ganz anderes Bild. Im mitteleuropäischen Binnenland fehlen bisher langjährige Feldstudien. Mit dem vorliegenden Beitrag füllen wir diese wissenschaftliche Lücke und legen die ersten Ergebnisse einer in den achtziger Jahren am Bodensee durchgeführten Untersuchung vor. Für Arten, die mit ≥ 10 Individuen durchgezogen sind, präsentieren wir eine Übersichtstabelle zum Zugverlauf. Zudem analysieren wir das Zugprofil von 'Kalendervögeln', von Wald- und Standvögeln. Die umfangreiche und langjährige LWVT/SOVON Studie aus den Niederlanden bietet dabei eine gute Vergleichsstudie zum visuell erfassten Heimzug.

2. Material und Methoden

Ziel der Studie war die Erstellung einer Datenbank anhand vorhandener Beobachtungen einer Feldstudie. Die Daten wurden wie folgt erhoben: Der Beobachtungspunkt lag auf der deutschen Seite des Bodensees an der Spitze der Halbinsel Höri (9° 00' 75" E, 47° 42' 00" N; Abb. 1). Die Halbinsel besteht aus einer Hügelformation mit Wald und Offenland. Mittlerweile besteht für die Flächen um den Beobachtungspunkt herum eine Naturschutzgebietsverordnung und ein öffentlicher Zugang ist nicht mehr möglich. Im Frühjahr erreichen tagziehende Vögel die nördliche Grenze der Schweiz und benutzen das Seeufer und die west-ost ausgrichtete Topographie der Halbinsel als Leitlinie. Durch diesen "Trichter"-Effekt gelangten die Tagzieher in konzentrierter Anzahl an den Beobachtungspunkt (siehe Pfeile in Abb. 1). Aufgrund der vor ihnen liegenden Wasserfläche geraten besonders Singvögel und Spechte an der Zählstelle in einen Orientierungskonflikt.

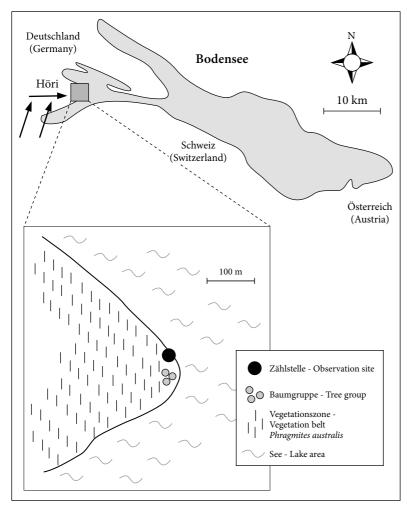


Abb. 1: Der Bodensee mit dem Zählpunkt an der Spitze der Halbinsel Höri. Die Pfeile weisen auf die Anflugrouten der Tagzieher während des Frühjahrs. Eine Vergrösserung (unten) zeigt die Position der Zählstelle direkt am Seeufer – Lake Constance, with the counting point located at the tip of the Höri peninsula. Arrows indicate migration routes of diurnal wandering birds in spring. The magnification (below) shows the position of the counting point at the lake bank.

Die Durchzügler mussten sich entscheiden, ob sie den Wasserkörper überfliegen oder ob sie der Uferlinie folgen, oder gegebenfalls zurück ins Hinterland fliegen (siehe unten). Das gegenüberliegende Seeufer ist in Richtung Nord und Ost 2,5 km entfernt, während nach Nordost das gegenüberliegende Ufer 3,7 km entfernt liegt.

Der Beobachtungszeitraum umfasste die Frühjahrsperioden 1984, 1985 und 1986. Die Beobachtungsstation war mit einem Feldornithologen besetzt (meistens mit G. F. J. Armbruster). Als Hilfsmittel wurden Fernglas (Vergrösserung 10x) und Spektiv (25x) verwendet. 831 Beobachtungsstunden wurden in die drei Frühjahrsperioden investiert. Zählungen fanden an insgesamt 194 Tagen statt: Im Jahr 1984 vom 6. März bis 9. Mai (293 h; ausgenommen am 7. und 8. Mai, an denen keine Daten gesammelt wurden), 1985 täglich vom 2. März bis 7. Mai (279 h), und im Jahr 1986 täglich vom 3. März bis 4. Mai (259 h, inklusive des 28. April, an dem jedoch keine Durchzügler notiert wurden). Von wenigen Ausnahmen

abgesehen, begannen die Untersuchungen morgens bei Sonnenaufgang (1984, 1986) oder 15 Minuten davor (1985). Die tägliche Beobachtungszeit dauerte – je nach Zugintensität – zwischen drei und acht Stunden. Die Beobachtungsperiode wurde in Pentaden unterteilt (Fünf-Tages-Intervalle; siehe Abb. 2). Alle Durchzügler wurden erfasst, mit Ausnahme von Schwalben und Mauerseglern, bei denen Futtersuche und aktive Wanderung am Beobachtungsort nicht unterschieden werden konnte.

Daten zur eingeschlagenen Zugrichtung konnten manchmal nicht erhoben werden (siehe Spalte "?" in Tab. 1), wofür mehrere Gründe verantwortlich waren: (i) Eine hohe Zugdichte erlaubte keine zeitgleiche Notierung der eingeschlagenen Zugrichtung aller Durchzügler, oder (ii) schlechtes Wetter (z.B. Nebel) erlaubten keine zuverlässige Bestimmung der Richtung, oder (iii) manche Vogelarten waren generell schwierig im offenen Himmel zu orten (z.B. rufende Heckenbraunellen Prunella modularis und Baumpieper Anthus trivialis). Nichtgesehene, aber rufende Vögel wurden so als einzelne Individuen mit unbekannnter Zugrichtung notiert.

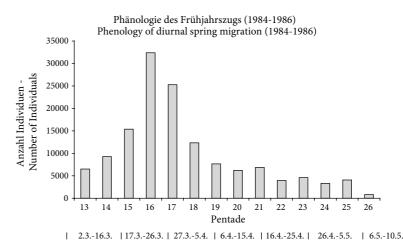
Dank. A. Schmidt, A. Brall, U. von Wicht, C. Braunberger, R. Specht und W. Fiedler danken wir herzlich für ihre Mithilfe in der Beobachtungsstation. Für finanzielle Unterstützung zur Durchführung der Studie danken wir der Ornithologischen Arbeitsgemeinschaft Bodensee. Besonders bedanken möchten wir uns bei der Basler Stiftung für Naturkundliche Forschung (Basel). Deren finanzielle Unterstützung ermöglichte die zeitraubende Eingabe der Feldprotokolle in die Datenbank. Merci vielmals auch an H.

van Gasteren, W. Fiedler, B. Bruderer, L. Jenni, S. Schuster, H.-P. Rusterholz, P. Stoll, R. Schefer und die wissenschaftlichen Gutacher für ihre Diskussionsbereitschaft.

3. Ergebnisse

Der Datensatz umfasst 35 583 Beobachtungen mit insgesamt 138 543 Individuen in 96 Arten. Abbildung 2 zeigt die saisonale Phänologie aller Durchzügler. Aktiver Zug wurde schon ab Anfang März (Pentade 13) registriert. Der stärkste Durchzug erfolgte in den Pentaden 16 und 17 (zwischen 17. und 26. März), während im April eine geringere Anzahl Durchzügler beobachtet wurde. Die Zählungen endeten Anfang Mai (Pentade 26), als nur noch wenige Durchzügler auftraten (siehe Abb. 2).

Die drei Frühjahrsperioden unterscheiden sich trotz vergleichbarer Beobachtungsintensität in der Anzahl an Vogelwarte 43 (2005) 173


Individuen deutlich (1984 = 64702; 1985 = 35.631 und 1986 = 38.210). Tabelle 1 zeigt eine zusammenfassende Darstellung für solche Arten, von denen ≥10 Individuen beobachtet wurden. Die zehn häufigsten Durchzügler in den drei Frühjahren waren Buchfink Fringilla coelebs (38 900), Bergfink Fringilla montifringilla (22.000), Star Sturnus vulgaris (10.900), Wacholderdrossel Turdus pilaris (10.400), Ringeltaube Columba palumbus (10.200), Saatkrähe Corvus frugilegus (5000), Feldlerche Alauda arvensis (4300), Rohrammer Emberiza schoeniclus (3200), Eichelhäher Garrulus glandarius (3100) und Blaumeise Parus caeruleus (3000).

Beim Eichelhäher könnte es zu Doppelzählungen gekommen sein,

da die Zugtrupps regelmässig ins Hinterland zurückflogen und schliesslich erneut am Beobachtungspunkt erschienen. Auf Angaben zu den Quartilen, dem Median und zur Zugrichtung wird daher verzichtet. Das Frühjahr 1985 lieferte nur wenige durchziehende Häher, was auch auf andere "Invasionsvögel" zutraf. Zum Beispiel liessen sich keine durchziehenden Individuen von Buntspecht *Dendrocopos major*, Kleiber *Sitta europaea*, Birkenzeisig *Carduelis flammea* und Fichtenkreuzschnabel *Loxia curvirostra* im Frühjahr 1985 nachweisen, im Gegensatz zu den Jahren 1984 und 1986 (Tab. 1).

Die Medianwerte (Tab. 1) geben einen Einblick in den jahreszeitlichen Ablauf des Zuggeschehens am Bodensee. Die drei frühesten Medianwerte zeigten Hohltaube Columba oenas (10. März), Saatkrähe (13.3.), sowie Rotmilan Milvus milvus und Feldlerche (14. März). Die drei spätesten Mediane wurden bei Girlitz Serinus serinus (23. April), Baumpieper Anthus trivialis (25. April) sowie bei Brachpieper Anthus campestris, Schafstelze Motacilla flava und Ortolan Emberiza hortulana (26. April) erreicht.

Die Abstände der Quartile unterscheiden sich zwischen den Arten (Tab. 1). 14 Arten zeigten eine komprimierte Phänologie. Bei ihnen fiel die Zeitspanne von 25%-Median-75% auf 10 oder weniger Tage (Tab. 1; eine Markierung mit * bedeutet eine geringe Anzahl an Durchzüglern): Schwarzmilan Milvus migrans*, Baumfalke Falco subbuteo*, Ringeltaube, Heidelerche Lullula arborea, Wiesenpieper Anthus pratensis, Gebirgsstelze Motacilla cinerea, Wacholderdrossel, Singdrossel, Rotdrossel Turdus iliacus, Bartmeise Panurus biarmicus*, Saatkrähe, Bergfink, Girlitz, und Ortolan*. Aufgrund ihres jahreszeitlich kulminierten Auftretens bezeichnen wir diese Arten in der vorliegenden Studie als 'Kalendervögel'. Baumläufer aus der Gattung Certhia nahmen wir nicht in diese Liste auf, da die Beobachtungen fast

Abb. 2: Saisonale Phänologie des Frühjahrsvogelzugs am Zählpunkt (Summe über alle Arten) – Seasonal phenology of the visible spring migration at the counting point (summarized over all species).

ausschliesslich aus einem Jahr stammen (1984, siehe Tab. 1). In den drei Frühjahren zeigten 14 andere Arten eine lange Migrationsperiode mit einem Zeitraum des 25%-Median-75% Signals von 20 und mehr Tagen (Tab. 1): Graureiher Ardea cinerea, Turmfalke Falco tinnunculus*, Türkentaube Streptopelia decaocto*, Buntspecht*, Heckenbraunelle Prunella modularis, Amsel Turdus merula, Tannenmeise Parus ater, Blaumeise, Elster Pica pica*, Grünfink Carduelis chloris, Erlenzeisig Carduelis spinus, Fichtenkreuzschnabel, Gimpel Pyrrhula pyrrhula und Kernbeisser Coccothraustres coccothraustes. Diese 14 Taxa traten also – über die drei Frühjahre gemittelt - mit lang dauernder Durchzugsphase in Erscheinung. Individuen der Gattung Regulus wurden nicht in die Liste aufgenommen, weil die Beobachtungen fast nur aus einer Frühjahrsperiode stammen (siehe Tab. 1).

Die Richtungspräferenzen unterscheiden sich zwischen den Arten (Tab. 1). Einige Taxa zeigten einen Trend zum Überfliegen des Wasserkörpers, z.B. Graureiher, Sperber Accipiter nisus, Mäusebussard Buteo buteo, Hohltaube, Ringeltaube und Rabenkrähe Corvus corone corone (mit bevorzugter Richtung N, NE oder E). Andere Arten wiesen Präferenzen für drei Richtungen auf (E und NE über den See, und NW entlang des Ufers, zum Beispiel Wacholderdrossel und Misteldrossel Turdus viscivorus). Eine Orientierung in zwei Hauptrichtungen (NE und NW) konnte auch beobachtet werden (z.B. Bachstelze Motacilla alba und Hänfling Carduelis cannabina). Ausgeprägte NW Orientierung entlang des Ufers fand ebenfalls statt, z.B. bei Laubsängern *Phyllos*copus ssp. (mit 70% Präferenz) und bei der Beutelmeise Remiz pendulinus (75%). Auch können sich Arten einer Gattung unterscheiden, beispielsweise Amsel und Misteldrossel. Die Amsel als Kurzstrecken-Zieher wies ausgeprägte NW und SW Präferenz auf, während die Misteldrossel als Mittelstreckenzieher vor allem einer

Tab. 1: Zusammenfassende Statistik des sichtbaren Frühjahrszugs am Bodensee. Für jedes Taxon ist die Totalsumme über die drei Frühjahre (Total N), die absolute Anzahl jedes einzelnen Jahres sowie das Datum des 25% Quartils, des Medians und des 75% Quartils dargestellt (gemittelt über die 3 Jahre). Die Zugrichtung ist in gerundeten Prozentwerten angegeben (ebenfalls zusammengefasst über die 3 Jahre). Die Spalte "?" in Tab. 1 gibt die Prozentzahl der Individuen mit unbekannter Zugrichtung an. Die letzte Spalte (Dmax) enthält das jeweilige Tagesmaximum von beobachteten Individuen - Summary statistics on visible diurnal spring migration at Lake Constance. Following data are shown for each taxon: total number of individuals in the three years (Total N), for each year separately, and date of 25% quartile, median and 75% quartile (summarized over all three years). Migration heading is shown in percentage values (rounded values over all three years). Dmax = observed daily maximum.

T	Takal NI	1984	1985	1007	250/	M - J:	750/	2	NTVA7	NT	NIE	Е	CE	C	CTAT	W	D
Taxon Phalacrocorax carbo	Total N 266	62	1985	1986 100	25% 25.3.	Median 1.4.	75% 7.4.	?	NW 5	N 40	NE 35	E 5	SE 0	S 12	SW 0	0	Dmax 33
Ardea cinerea	45	17	104	14	24.3.	29.3.	19.4.	0	9	18	49	18	4	2	0	0	9
Milvus migrans	31	12	10	9	21.3.	26.3.	29.3.	0	3	10	45	29	13	0	0	0	3
Milvus milvus	11	7	2	2	11.3.	14.3.	28.3.	0	0	18	36	36	9	0	0	0	2
Circus aeruginosus	27	10	7	10	30.3.	4.4.	15.4.	0	22	15	56	7	0	0	0	0	2
Accipiter nisus	60	24	19	17	18.3.	24.3.	30.3.	2	5	12	60	17	5	0	0	0	4
Buteo buteo	456	209	174	73	13.3.	18.3.	24.3.	2	7	11	65	7	1	1	2	2	32
Falco tinnunculus	31	15	7	9	12.3.	21.3.	15.4.	0	0	13	52	23	13	0	0	0	2
Falco subbuteo	17	5	9	3	16.4.	19.4.	22.4.	0	47	6	29	18	0	0	0	0	2
Vanellus vanellus	845	267	375	203	11.3.	18.3.	23.3.	0	18	7	43	16	6	7	1	2	106
Tringa nebularia	24	0	24	0	11.5.	ein Trupp		0	0	100	0	0	0	0	0	0	24
Columba oenas	135	50	56	29	4.3.	10.3.	20.3.	1	10	15	43	29	0	0	1	1	20
Columba palumbus	10274	3951	3856	2467	23.3.	25.3.	30.3.	1	2	4	52	31	4	4	2	1	1407
Streptopelia decaocto	10	2	5	3	2.4.	19.4.	21.4.	0	80	0	0	0	0	10	10	0	3
Dendrocopos major	14	9	0	5	21.3.	12.4.	25.4.	8	78	0	0	0	0	0	0	14	3
Lullula arborea	539	409	81	49	16.3.	20.3.	23.3.	12	11	2	35	34	5	1	1	0	69
Alauda arvensis	4373	1868	1174	1331	9.3.	14.3.	22.3.	23	6	8	44	9	3	2	3	1	322
Anthus campestris	16	6	4	6	21.4.	26.4.	2.5.	38	44	0	6	6	0	0	6	0	2
Anthus trivialis	987	374	343	270	20.4.	25.4.	1.5.	64	14	1	9	2	5	2	2	1	88
Anthus pratensis	2098	1282	397	419	17.3.	21.3.	26.3.	22	13	1	49	8	4	1	1	0	200
Anthus spinoletta	798	558	107	133	2.4.	11.4.	18.4.	25	25	0	9	11	22	5	3	0	53
Motacilla flava	867	302	414	151	20.4.	26.4.	1.5.	35	28	1	8	4	15	8	1	1	93
Motacilla cinerea	343	178	103	62	15.3.	20.3.	24.3.	40	11	3	20	16	7	2	0	0	19
Motacilla alba	1893	944	585	364	15.3.	22.3.	31.3.	18	25	3	28	8	10	3	2	1	91
Prunella modularis	931	470	183	278	23.3.	4.4.	14.4.	82	11	0	1	1	2	1	1	1	40
Turdus merula	404	233	61	110	18.3.	26.3.	7.4.	6	43	2	8	3	10	6	19	3	22
Turdus pilaris	10483	2299	2487	5697	18.3.	22.3.	26.3.	10	32	5	21	13	7	6	5	1	666
Turdus philomelos	983	459	134	390	14.3.	15.3.	20.3.	14	33	4	15	11	11	4	6	1	148
Turdus iliacus	214	84	17	113	18.3.	24.3.	27.3.	18	35	3	13	8	3	11	8	0	47
Turdus viscivorus	1140	489	367	284	13.3.	18.3.	23.3.	16	17	5	30	19	7	4	2	1	59
Phylloscopus sp.	199	58	66	75	27.3.	2.4.	12.4.	4	70	3	4	3	9	2	5	3	13
Regulus sp.	12	11	0	1	15.3.	29.3.	18.4.	67	33	0	0	0	0	0	0	0	2
Phoenicurus ochruros	13	6	1	6	10,4	14,4	26.4.	0	23	0	15	15	39	0	8	0	3
Panurus biarmicus	17	7	1	9	24.3.	28.3.	29.3.	0	71	5	0	0	24	0	0	0	7
Parus ater	1592	752	412	428	2.4.	19.4.	26.4.	14	28	0	9	10	17	6	15	2	115
Parus caeruleus	3038	1727	863	448	16.3.	24.3.	9.4.	17	34	2	14	11	14	4	4	1	113
Parus major	1269	778	190	301	14.3.	20.3.	28.3.	19	37	2	14	8	13	4	3	2	65
Sitta europaea	65	49	0	16	8.4.	15.4.	20.4.	14	37	0	8	2	11	5	17	8	8
Certhia sp.	11	10	1	0	22.3.	23.3.	30.3.	0	82	0	9	9	0	0	0	0	1
Remiz pendulinus	559	138	174	247	4.4.	15.4.	20.4.	8	75	1	5	2	8	1	0	0	66
Sturnus vulgaris	10938	6372	2301	2265	11.3.	17.3.	21.3.	3	13	3	59	12	3	1	5	1	1748
Garrulus glandarius	3131	2492	17	622					s	iehe '	Text						
Pica pica	20	10	5	5	14.3.	17.3.	5.5.	5	45	0	5	0	0	20	25	0	4
Corvus monedula	111	54	32	25	14.3.	19.3.	28.3.	21	9	8	41	7	3	0	11	0	11
Corvus frugilegus	4998	2559	1223	1216	9.3.	13.3.	15.3.	5	4	7	54	7	4	0	13	6	510
Corvus corone corone	29	0	22	7	15.3.	28.3.	3.4.	0	0	17	31	52	0	0	0	0	6
Passer montanus	1038	645	222	171	15.3.	19.3.	2.4.	44	34	1	4	3	7	2	4	1	113
Fringilla coelebs	38912	15953	7889	15070	18.3.	24.3.	5.4.	12	25	4	31	10	9	5	4	2	2525
Fringilla montifringilla	22081	9969	6953	5159	19.3.	21.3.	23.3.	9	19	9	36	12	8	3	2	1	1946
Serinus serinus	925	357	394	174	18.4.	23.4.	27.4.	47	25	2	14	3	3	1	2	2	61
Carduelis chloris	1471	643	275	553	15.3.	26.3.	12.4.	33	27	2	17	10	7	2	2	2	139
Carduelis carduelis	1774	817	729	228	17.4.	22.4.	27.4.	29	18	4	28	7	7	3	2	2	91
Carduelis spinus	1320	253	753	314	10.3.	22.3.	9.4.	31	26	3	15	10	7	2	3	3	69
Carduelis cannabina	2471	1254	627	590	7.4.	16.4.	22.4.	27	23	5	32	6	5	1	2	1	164
Carduelis flammea	36	13	0	23	28.3.	9.4.	16.4.	19	39	3	25	8	6	0	0	0	11
Loxia curvirostra	79	68	0	11	17.3.	23.3.	13.4.	57	6	3	3	8	0	13	10	1	10
Pyrrhula pyrrhula	145	81	26	38	18.3.	26.3.	12.4.	37	30	1	3	6	8	4	9	3	7
Coccothraustes coccoth.	322	181	38	103	19.3.	3.4.	16.4.	26	22	0	14	7	6	12	9	5	40
Emberiza citrinella	314	203	58	53	17.3.	21.3.	31.3.	40	27	1	7	4	10	2	5	3	21
Emberiza hortulana	18	3	5	10	26.4.	26.4.	30.4.	22	72	0	0	0	0	0	6	0	6
Emberiza schoeniclus	3209	1200	1190	819	12.3.	18.3.	28.3.	8	50	3	17	4	13	5	1	0	148

Vogelwarte 43 (2005) 175

NW, NE und E Orientierung folgte (Tab. 1). Die Richtungspräferenz W war alles in allem nur schwach ausgeprägt (Tab. 1).

35 Arten waren seltene Durchzügler. Sie sind mit <10 Individuen im Gesamtdatensatz vertreten: Schwarzstoch Ciconia nigra, Weissstorch Ciconia ciconia, Graugans Anser anser, Spiessente Anas acuta, Gänsesäger Mergus merganser, Kornweihe Circus cyaneus, Wiesenweihe Circus pygargus, Habicht Accipiter gentilis, Schelladler Aquila clanga, Fischadler Pandion haliaetus, Merlin Falco columbarius, Rotfussfalke Falco vespertinus, Wanderfalke Falco peregrinus, Kranich Grus grus, Bekassine Gallinago gallinago, Grosser Brachvogel Numenius arquata, Teichwasserläufer Tringa stagnalis, Waldwasserläufer Tringa ochropus, (Schmarotzer-)Raubmöwe *Stercorarius c.f. pa*rasiticus, Strassentaube Columba liva f. domestica, Kuckuck Cuculus canorus, Mittelspecht Dendrocopos medius, Kleinspecht Dendrocopos minor, Schwarzspecht Dryocopus martius, Rotkehlpieper Anthus cervinus, Mönchsgrasmücke Sylvia atricapilla, Grauschnäpper Muscicapa striata, Schwanzmeise Aegithalos caudatus, Sumpfmeise Parus palustris, Weidenmeise Parus montanus, Pirol Oriolus oriolus, Kolkrabe Corvus corax, Haussperling Passer domesticus, Zitronengirlitz Serinus citrinella und Grauammer Miliaria calandra.

Die sehr niedrige Anzahl an ziehenden Haussperlingen (n = 2) wird im Hinblick auf die niederländische LWVT/SOVON Studie nochmals aufgegriffen (siehe unten).

4. Diskussion

Die Intensität des Durchzugs variierte, im Mittelwert über alle Arten, um Faktor zwei in den verschiedenen Jahren (1985 = 35.631 Individuen; 1984 = 64.702). Bei einzelnen Arten (z.B. der Heidelerche) variierte die Intensität zwischen den Jahren um Faktor acht (s.u.). Bei manchen "Invasionsvögeln" wurden im Frühjahr 1985 überhaupt keine ziehenden Individuen notiert, vermutlich weil es im Vorjahr zu keinen auffallenden Einflügen gekommen ist. Am Bodensee traf dies zumindest für Kleiber, Fichtenkreuzschnabel und Birkenzeisig zu. Die drei Arten hatten im Herbst 1984 einen individuenschwachen Durchzug (Ornithologische Arbeitsgemeinschaft Bodensee 1998/1999: 681, 738-740).

Im Gegensatz zum Bodensee bildet die niederländische Küste eine lange Leitlinie mit einer besonders hohen Anzahl an Frühjahrsdurchzüglern, wie das Küstengebiet von Breskens zeigt (LWVT/SOVON 2002; siehe auch www.

Tab. 2: Vergleichende Gegenüberstellung vom Bodensee (1984 - 1986) und den Niederlanden (1976 - 1993) über den sichtbaren Frühjahrszug. (a) Arten mit höherer Individuenzahl an Durchzüglern (N) am Bodensee, (b) mit auffallend hoher Anzahl in den Niederlanden. (c) Arten mit früherem Median am Bodensee, (d) mit späterem Median (Anzahl der Individuen in Klammern) – Comparative data of Lake Constance (1984 – 1986) and The Netherlands (1976 – 1993) on visible diurnal spring migration. (a) Species with higher number of migrants (N) at Lake Constance, (b) with much higher number in The Netherlands. (c) Species with earlier median at Lake Constance, (d) with later median (number of observed individuals in parentheses).

(a) Höheres N am Bodensee	Bodensee	Niederlande (alle Orte, alle Frühjahre)					
Lullula arborea	N = 539	N = 253					
Parus ater	N = 1592	N = 141					
Parus caeruleus	N = 3038	N = 412					
Parus major	N = 1269	N = 700					
Fringilla montefringilla	N = 22.081	N = 3334					
Pyrrhula pyrrhula	N = 145	N = 100					
Coccothraustes coccoth.	N = 322	N = 202					
Serinus serinus	N = 925	N = 137					
Remiz pendulinus	N = 559	Drei Beobachtungen mit wenigen Individuen					
Sitta europaea	N = 65	24 Beobachtungen, inklusive Herbst					
Certhia (brachydactyla)	N = 11	14 Beobachtungen, inklusive Herbst					
Garrulus glandarius	N ≈ 3131	N = 323					
(b) Auffallend hohes N in	den Niederlar	nden					
Streptopelia decaocto	N = 10	N = 3270					
Corvus corone corone	N = 29	N = 4821					
Passer domesticus	N = 2	N = 442					
(c) Früherer Median am Bodensee	Bodensee	Niederlande (alle Orte, alle Frühjahre)					
a							
Circus aeruginosus	4.4. (27)	22.4 10.5. (2489)					
Circus aeruginosus Accipiter nisus	4.4. (27) 24.3. (60)						
-		22.4 10.5. (2489) 26.3 21.4. (2090) 22.3 19.4. (3599)					
Accipiter nisus	24.3. (60)	26.3 21.4. (2090)					
Accipiter nisus Buteo buteo	24.3. (60) 18.3. (456)	26.3 21.4. (2090) 22.3 19.4. (3599)					
Accipiter nisus Buteo buteo Milvus migrans	24.3. (60) 18.3. (456) 26.3. (31)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus Anthus trivialis	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31) 25.4. (987)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295) 29.4 7.5. (16.373)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus Anthus trivialis Anthus pratensis	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31) 25.4. (987) 21.3. (2098)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295) 29.4 7.5. (16.373) 18.4 25.4. (515.691)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus Anthus trivialis Anthus pratensis Motacilla flava	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31) 25.4. (987) 21.3. (2098) 26.4. (867)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295) 29.4 7.5. (16.373) 18.4 25.4. (515.691) 3.5 15.5. (68.025)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus Anthus trivialis Anthus pratensis Motacilla flava Motacilla alba	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31) 25.4. (987) 21.3. (2098) 26.4. (867) 22.3. (1893)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295) 29.4 7.5. (16.373) 18.4 25.4. (515.691) 3.5 15.5. (68.025) 24.3 2.4. (27.573)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus Anthus trivialis Anthus pratensis Motacilla flava Motacilla alba Turdus philomelos	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31) 25.4. (987) 21.3. (2098) 26.4. (867) 22.3. (1893) 15.3. (983)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295) 29.4 7.5. (16.373) 18.4 25.4. (515.691) 3.5 15.5. (68.025) 24.3 2.4. (27.573) 22.3 24.4. (6278)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus Anthus trivialis Anthus pratensis Motacilla flava Motacilla alba Turdus philomelos Corvus frugilegus	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31) 25.4. (987) 21.3. (2098) 26.4. (867) 22.3. (1893) 15.3. (983) 13.3. (4998)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295) 29.4 7.5. (16.373) 18.4 25.4. (515.691) 3.5 15.5. (68.025) 24.3 2.4. (27.573) 22.3 24.4. (6278) 14.3 21.3. (38.601)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus Anthus trivialis Anthus pratensis Motacilla flava Motacilla alba Turdus philomelos Corvus frugilegus Passer montanus	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31) 25.4. (987) 21.3. (2098) 26.4. (867) 22.3. (1893) 15.3. (983) 13.3. (4998) 19.3. (1038) 23.4. (925)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295) 29.4 7.5. (16.373) 18.4 25.4. (515.691) 3.5 15.5. (68.025) 24.3 2.4. (27.573) 22.3 24.4. (6278) 14.3 21.3. (38.601) 20.3 8.4. (22.124)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus Anthus trivialis Anthus pratensis Motacilla flava Motacilla alba Turdus philomelos Corvus frugilegus Passer montanus Serinus serinus	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31) 25.4. (987) 21.3. (2098) 26.4. (867) 22.3. (1893) 15.3. (983) 13.3. (4998) 19.3. (1038) 23.4. (925) odensee	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295) 29.4 7.5. (16.373) 18.4 25.4. (515.691) 3.5 15.5. (68.025) 24.3 2.4. (27.573) 22.3 24.4. (6278) 14.3 21.3. (38.601) 20.3 8.4. (22.124) 25.4. (137)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus Anthus trivialis Anthus pratensis Motacilla flava Motacilla alba Turdus philomelos Corvus frugilegus Passer montanus Serinus serinus (d) Späterer Median am B	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31) 25.4. (987) 21.3. (2098) 26.4. (867) 22.3. (1893) 15.3. (983) 13.3. (4998) 19.3. (1038) 23.4. (925) odensee 14.3. (4373)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295) 29.4 7.5. (16.373) 18.4 25.4. (515.691) 3.5 15.5. (68.025) 24.3 2.4. (27.573) 22.3 24.4. (6278) 14.3 21.3. (38.601) 20.3 8.4. (22.124) 25.4. (137) 9.2 13.3. (57.466)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus Anthus trivialis Anthus pratensis Motacilla flava Motacilla alba Turdus philomelos Corvus frugilegus Passer montanus Serinus serinus (d) Späterer Median am B Alauda arvensis	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31) 25.4. (987) 21.3. (2098) 26.4. (867) 22.3. (1893) 15.3. (983) 13.3. (4998) 19.3. (1038) 23.4. (925) odensee 14.3. (4373) 4.4. (931)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295) 29.4 7.5. (16.373) 18.4 25.4. (515.691) 3.5 15.5. (68.025) 24.3 2.4. (27.573) 22.3 24.4. (6278) 14.3 21.3. (38.601) 20.3 8.4. (22.124) 25.4. (137) 9.2 13.3. (57.466) 21.3 27.3. (937)					
Accipiter nisus Buteo buteo Milvus migrans Falco tinnunculus Anthus trivialis Anthus pratensis Motacilla flava Motacilla alba Turdus philomelos Corvus frugilegus Passer montanus Serinus serinus (d) Späterer Median am B Alauda arvensis Prunella modularis	24.3. (60) 18.3. (456) 26.3. (31) 21.3. (31) 25.4. (987) 21.3. (2098) 26.4. (867) 22.3. (1893) 15.3. (983) 13.3. (4998) 19.3. (1038) 23.4. (925) odensee 14.3. (4373)	26.3 21.4. (2090) 22.3 19.4. (3599) 8.5. (112) 4.4 2.5. (1295) 29.4 7.5. (16.373) 18.4 25.4. (515.691) 3.5 15.5. (68.025) 24.3 2.4. (27.573) 22.3 24.4. (6278) 14.3 21.3. (38.601) 20.3 8.4. (22.124) 25.4. (137) 9.2 13.3. (57.466)					

trektellen.nl und www.birdingzeeland.nl). Wir erwarteten daher in der 18 Jahre dauernden holländischen Studie weitaus mehr gezählte Individuen als in der vorliegenden Untersuchung. Diese Hypothese war plausibel, da in den Niederlanden dutzende von Beobachtungsstellen eingerichtet waren, wogegen es sich am Bodensee nur um einen einzigen Beobachtungspunkt und um eine Zeitspanne von drei Frühjahren handelte. Diese Arbeitshypothese wird aber für 12 Arten verworfen (Tab. 2a). Die 12 genannten Arten zeigen im Frühjahr also einen Zugschatten über den Niederlanden. Das lässt sich einerseits damit erklären, dass die Zugrouten und Brutgebiete der betroffenen Arten mehr im Osten oder Süden liegen (z.B. bei Girlitz, Heidelerche und Beutelmeise), andererseits auch mit der Vegetationsbedeckung. Neun der Arten aus Tabelle 2a sind typische Waldarten: Tannenmeise, Blaumeise, Kohlmeise Parus major, Bergfink, Gimpel, Kernbeisser, Kleiber, Baumläufer und Eichelhäher. Der Waldanteil scheint also beim Heimzug dieser neun Arten von Bedeutung sein. 31% der Schweiz, 36% von Süddeutschland, aber nur 9% der niederländischen Fläche sind mit Wald bedeckt (www.bfs.admin.ch und www.sdw.de/wald/waschb97.htm). Die eher offene, sich schnell wandelnde Landschaftsstruktur der Niederlande kann auch mit der Zugaktivität von Standvögeln, wie Türkentaube, Haussperling und Rabenkrähe, in Verbindung gebracht werden (s.u.).

Die Median-Werte aus Tabelle 1 eignen sich für einen Vergleich mit den Median-Angaben aus der LWVT/SOVON Studie (Tab. 2c und 2d). Am Bodensee gab es Arten, deren Median-Werte früher (13 Arten) oder später lagen (5 Arten) als in den Niederlanden. Dieser Befund spiegelt ein generelles Muster wieder. Median-Werte sind im mitteleuropäischen Raum von der geographischen Position der Zählstelle abhängig (Gatter 1991) sowie von Wetterbedingungen und populationsspezifischem Wanderverhalten (s.u.). Im Folgenden beschränken wir die Auswertung auf acht Arten. Vergleiche von Medianen, das Zugverhalten typischer Standvögel und Befunde zur Zugrichtung stehen dabei im Vordergrund. Als Referenzstudie wird vor allem die LWVT/SOVON Studie herangezogen.

Schwarzmilan Milvus migrans

Das Brutgebiet des Schwarzmilans liegt in Eurasien, mit Ausnahme von Nordwesteuropa, Dänemark, Schweden und Norwegen (Glutz von Blotzheim et al. 1971: 104). Die Niederlande liegen nur 450 – 600 km nordwestlich des Bodenseebeckens. Dies ist keine grosse Distanz für Langstrecken-Zieher wie den Schwarzmilan. Dennoch unterscheiden sich beide Regionen in den Medianen deutlich. Der Median am Bodensee war relativ früh (26. März; mit einem letzten ziehenden Individuum Mitte April). In den Niederlanden lag der Median sechs Wochen später (8. Mai; siehe Tab. 2c). Dieses Bild ist vermutlich auf nicht-brütende Tiere zurückzuführen (Schifferli 1967: 41; Glutz von Blotzheim et al. 1971:

115-117; LWVT/SOVON 2002: 279). Neben dem Schwarzmilan weisen andere Greifvögel ebenfalls Median-Unterschiede auf, z.B. Rohrweihe *Circus aeruginosus*, Sperber und Mäusebussard zwischen verschiedenen niederländischen Regionen (Tab. 2c). Populationsspezifisches Wanderverhalten und Wetterbedingungen sind die Ursache für die regional spezifische Phänologie (Gatter 1991; LWVT/SOVON 2002: 96-102).

Türkentaube Streptopelia decaocto, Rabenkrähe Corvus corone corone und Haussperling Passer domesticus

Die drei Arten leben in anthropogen beeinflussten Habitaten und gelten als Standvögel mit relativ hoher Ortstreue. Während der drei Beobachtungsjahre konnten am Bodensee nur wenige migrierende Individuen beobachtet werden (Türkentaube n = 10, Rabenkrähe n = 29, Haussperling n = 2). An niederländischen Zählstellen wurde dagegen stärkerer Frühjahrszug registriert (Tab. 2b). Obwohl die Zahlenverhältnisse nicht unbedingt vergleichbar sind, scheint die Zug- bzw. Dispersions-Neigung in den Niederlanden stärker ausgeprägt zu sein als am Bodensee (Tab. 2b). Eine Reihe von Faktoren könnte dieses Phänomen erklären: Die nordwestliche Randposition der Niederlande, die hohe menschliche Populationsdichte mit vielen anthropogen geformten Nischen, und die intensive holländische Agrarwirtschaft. Die genannten Faktoren stehen in Bezug zu Ergebnissen anderer Autoren. In der evolutionsbiologischen Arbeit von Alerstam & Enckell (1979) wird die Entwicklung von Zugausprägung und reduzierter Standorttreue mit den Umweltvariablen 'unpredictable habitats' (unvorhersagbare, sich wandelnde Habitate), 'structurally simple niches' (strukturell einfache Nischen) und 'marginal areas' (geographische Randlage) in Zusammenhang gebracht. Türkentaube, Rabenkrähe und Haussperling könnten diesen Evolutionsfaktoren in den Niederlanden besonders unterworfen sein und dort deshalb eine stärkere Zugaktivität aufweisen als im Binnenland Mitteleuropas.

Heidelerche Lullula arborea

Die Zahl durchziehender Heidelerchen variierte in den drei Untersuchungsjahren um Faktor acht (1984 = 409 Individuen, 1986 = 49; siehe Tab. 1). Eine Erklärung für diese starke Schwankung könnte der Bruterfolg im nördlichen und östlichen Europa sein (Gatter 2000: 474-475). Auch spielen Überwinterungsbedingungen eine Rolle beim Ablauf des Frühjahrszugs (LWVT/SOVON 2002: 174). Hauptzugrichtung am Bodensee war NE and E über die Wasserfläche des Sees (Tab. 1). Aufgrund der zwei Orientierungspräferenzen lässt sich vermuten, dass Individuen aus verschiedenen osteuropäischen Populationen den süddeutschen Raum überqueren. In den Niederlanden zeigt die Heidelerche eine Hauptzugrichtung nach NE (LWVT/SOVON 2002: 175), was darauf hindeutet, dass dort im Frühjahr Populationen aus Norddeutschland bzw. Skandinavien durchziehen.

Vogelwarte 43 (2005) 177

Wiesenpieper Anthus pratensis

Ähnlich wie der Schwarzmilan hatte auch diese Art einen viel früheren Median am Bodensee als in den Niederlanden (Tab. 2c), mit Hauptzugrichtung NE (fast 50% aller Individuen; Tab. 1). Die ausgeprägte NE-Orientierung trifft auch für untersuchte Individuen aus Nordwestdeutschland und den Niederlanden zu. Helbig et al. (1987) stellten NE als Hauptrichtung für Durchzügler in Nordwestdeutschland fest. In den Niederlanden sind, in Abhängigkeit von der Beobachtungsstelle, ebenfalls N, NNE bzw. NE die Hauptrichtungen während des Frühjahrs (LWVT/SOVON 2002). Ringfunde deuten ebenfalls auf NNE - NE Richtungen (allerdings nicht für britische bzw. isländische Populationen; siehe Zink 1975). Im Vergleich zum Bergpieper A. spinoletta waren in der vorliegenden Studie die Zugrichtungen NW und SE nur schwach ausgeprägt (siehe Tab. 1), d.h. nah verwandte Arten einer Gattung können sich deutlich in ihrer Zugrichtung unterscheiden.

Beutelmeise Remiz pendulinus

Die Beutelmeise bevorzugt See- und Flussufer als Leitlinien während ihres Zuges (Glutz von Blotzheim & Bauer 1993). Ein Maximum von 66 Individuen pro Tag wurde in der vorliegenden Studie beobachtet. Die Beutelmeise gehörte zu den Arten mit der stärksten NW Richtungspräferenz (Tab. 1). Diese Orientierungsausrichtung bestätigt eine Arealexpansion. Beutelmeisen zeigten während der letzten Jahrzehnte eine Arealausweitung nach Nord, Nordwest und West (Flade et al. 1986; Schönfeld 1989; Theiss 1993; Valera et al. 1993). Ob und wie sich die Phänologie und die Zugrichtung der Beutelmeise in den letzten Jahren geändert hat, liesse sich sicherlich genauer analysieren. Eine Wiederholungsstudie an der selben Beobachtungsstelle wäre diesbezüglich sehr lohnend (s.u.). Bis zum Jahr 1993 erreichte die beschriebene Areal-Expansion die Niederlande noch nicht. Dort sind Frühjahrsbeobachtungen von Beutelmeisen die Ausnahme (Tab. 2a).

Baumläufer Certhia (brachydactyla)

In der Literatur gibt es bisher nur sehr wenige Angaben über aktiven Heimzug von (Garten-) Baumläufern (Randler 1997). Unsere Untersuchung dokumentierte insgesamt 11 Individuen, vor allem aus dem Jahr 1984 (Tab. 1). In den meisten Fällen gelang es die Tiere aufgrund ihres Rufs als *C. brachydactyla* zu bestimmen. Die Vögel rasteten in der Baumgruppe am Zählpunkt (Abb. 1), bevor sie ihren Zug fortsetzten. Einzelne Individuen schlugen die Richtung NE oder E über die Seefläche ein, was auf aktive Wanderung schliessen lässt (Tab. 1).

5. Ausblick

Die vorliegende Studie gibt einen Einblick in die Intensität des sichtbaren Frühjahrszugs im mitteleuropäischen Binnenland. Mit einer Wiederholungsstudie könnten

diverse Fragestellungen genauer beleuchtet werden, z.B. ob sich das Heimzug-Verhalten in den letzten Jahrzehnten geändert hat. 14 Arten erschienen während der 1980er Jahre als sogenannte "Kalendervögel" (siehe Ergebnisse). Gerade die kulminierte Phänologie der individuenreichen Arten wie Ringeltaube, Heidelerche, Wiesenpieper, Gebirgsstelze, Wacholder-, Sing- und Rotdrossel, Saatkrähe, Bergfink und Girlitz sollte weiter analysiert werden. Es wäre interessant zu erfahren, ob diese "Kalendervögel" heute einen gegenüber den 1980er Jahren verschobenen Median zeigen. Mehrere Arbeiten belegen, dass klimatische Faktoren und die globale Erwärmung einen Einfluss auf das jahreszeitliche Profil bzw. das Zugverhalten von Vögeln haben (siehe z.B. Mason 1995; Both & Visser 2001; Zalakevicius & Zalakeviciute 2001; Jonzen et al. 2002; Jenni & Kery 2003; Cotton 2003; Hubalek 2003; Hüppop & Hüppop 2003; Fiedler 2003; Vahatalo et al. 2004). Ein weiterer Aspekt unserer Arbeit wird die Bereitstellung der Datenbank sein, denn ein offener Zugang von Datenreihen (das sogenannte 'open source publishing') wird immer relevanter (siehe z.B. Check 2004; und im Internet unter www.euring.org, www.kbinirsnb.be/cb/ornis/species.htm, www.ebird.org, www.trektellen.nl und www.birds.org.il). Im nächsten Schritt vervollständigen wir die Datenbank mit metereologischen Befunden und publizieren sie im Internet zur freien Verfügung. Dies wird eine Bearbeitung von weiteren Fragestellungen erlauben, z.B. über Zugverlauf und Wetterbedingungen.

6. Zusammenfassung

Wir erstellen derzeit die erste Datenbank zum sichtbaren Frühjahrszug des mitteleuropäischen Binnenlandes. Um den Frühjahrszug zu erfassen, wählten wir eine exponierte Beobachtungsstelle am Bodenseeufer aus. Die Daten wurden in den Jahren 1984 – 1986 erhoben (an insgesamt 194 Tagen mit 831 Beobachtungsstunden von Anfang März bis Anfang Mai, jeden Morgen von Sonnenaufgang bis späten Morgen bzw. Mittag). Das Projekt lieferte 35583 Einzelbeobachtungen mit insgesamt 138543 Individuen in 96 Arten. Einige Ergebnisse lassen sich mit der langjährigen niederländischen LWVT/ SOVON Studie vergleichen, besonders im Hinblick auf das Zugverhalten von Waldvögeln. Weitere Themen der Studie sind: Median-Werte und Phänologie von vierzehn "Kalendervögeln" und des Schwarzmilans Milvus migrans, das Zugverhalten von typischen Standvögeln (Türkentaube Streptopelia decaocto, Rabenkrähe Corvus corone corone, Haussperling Passer domesticus), die Hauptzugrichtung (Beutelmeise Remiz pendulinus, Wiesenpieper Anthus pratensis, Heidelerche Lullula arborea), sowie Nachweise ziehender Gartenbaumläufer Certhia brachydactyla. Mit einer Wiederholungsstudie könnten möglicherweise Veränderungen im Zugverhalten der Heimzieher über die letzten Jahrzehnte festgestellt werden. Im nächsten Schritt vervollständigen wir die Endversion der Datenbank und publizieren sie online mit freiem Zugang durch das Internet, was eine Ausweitung der Analysen erlauben wird, z.B. im Hinblick auf Zugverhalten und vorherrschende Wetterbedingungen.

7. Literatur

- Alerstam T & Enkell PH 1979: Unpredictable habitats and evolution of bird migration. Oikos 33: 228-232.
- Both C & Visser ME 2001: Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411: 296-298.
- Berthold P & Gwinner E 2003: Preface. In: Berthold P, Gwinner E & Sonnenschein E (eds.). Avian Migration: VII-VIII. Springer Verlag, Berlin.
- Bruderer B 1967: Zur Witterungsabhängigkeit des Herbstzuges im Jura. Der Ornithologische Beobachter 64: 57-90.
- Bruderer B 1997: The Study of Bird Migration by Radar. Part 2. Major Achievements. Naturwissenschaften 84: 45-54.
- Bruderer B & Jenni L 1990: Migration across the Alps. In: Gwinner E (ed.) Bird Migration. Physiology and Ecophysiology: 60-77. Springer Verlag, Berlin.
- Check E 2004: Five-year grant gets bird database off to a flying start. Nature 431: 7.
- Cotton PA 2003: Avian migration phenology and global climate change. Proceedings of the National Academy of Science USA 100: 12219-12222.
- Dorka V 1966: Das jahreszeitliche und tageszeitliche Zugmuster von Kurz- und Langstreckenziehern nach Beobachtungen auf den Alpenpässen Cou/Bretolet (Wallis). Der Ornithologische Beobachter 63: 165-223.
- Fiedler W 2003: Recent changes in migratory behaviour of birds: a compilation of field observations and ringing data. In: Berthold P, Gwinner E & Sonnenschein E (eds.) Avian Migration: 21-38. Springer Verlag, Berlin.
- Flade M, Franz D & Helbig A 1986: Die Ausbreitung der Beutelmeise (*Remiz pendulinus*) an ihrer nordwestlichen Verbreitungsgrenze bis 1985. Journal für Ornithologie 127: 261-290.
- Gatter W 1991: Bewertung und Vergleichbarkeit von Medianwerten des Wegzugs am Beispiel des Randecker Maar-Programm. Vogelwarte 36: 19-34.
- Gatter W 2000: Vogelzug und Vogelbestände in Mitteleuropa. 30 Jahre Beobachtung des Tagzugs am Randecker Maar. Aula-Verlag, Wiebelsheim.
- Gehring W 1967: Radarbeobachtungen über den Vogelzug am Col de Bretolet in den Walliser Alpen. Der Ornithologische Beobachter 64: 133-151.
- Glutz von Blotzheim UN & Bauer KM 1993: Handbuch der Vögel Mitteleuropas. Vol. 3/II. Passeriformes (Part 4). Aula Verlag, Wiesbaden.
- Glutz von Blotzheim UN, Bauer KM & Bezzel E 1971: Handbuch der Vögel Mitteleuropas. Vol. 4. Falconiformes. Akademische Verlagsgesellschaft, Frankfurt.
- Helbig AJ, Orth G, Laske V & Wiltschko W 1987: Migratory orientation and activity of the meadow pipit (*Anthus pratensis*): a comparative observational and experimental field study. Behaviour 103: 276-293.

- Hubalek Z 2003: Spring migration of birds in relation to North Atlantic Oscillation. Folia Zoologica 52: 287-298.
- Hüppop O & Hüppop K 2003: North Atlantic Oscillation and timing of spring migration in birds. Proceedings of the Royal Society Biological Sciences Series B 270: 233-240.
- Jenni L & Kery M 2003: Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proceedings of the Royal Society Biological Sciences Series B 270: 1467-1471.
- Jonzen N, Hendenstrom A, Hjort C, Lindstrom A, Lundberg P & Andersson A 2002: Climate patterns and the stochastic dynamics of migratory birds. Oikos 97: 329-336.
- LWVT/SOVON (ed.) 2002: Vogeltrek over Nederland 1976 - 1993. 1-431. Schuyt & Co., Haarlem. ISBN 90 6097 566 9.
- Mason CF 1995: Long-term trends in the arrival dates of spring migrants. Bird Study 42: 182-189.
- Ornithologische Arbeitsgemeinschaft Bodensee 1998/ 1999: Die Vögel des Bodenseegebietes. Ornithologische Jahreshefte für Baden-Württemberg 14/15: 1-847. ISSN 0177-5456.
- Randler C 1997: Observation of a diurnal migrant short-toed treecreeper (*Certhia brachydactyla*) in spring. Vogelwarte 39: 96-97.
- Schifferli A 1967: Vom Zug schweizerischer und deutscher Schwarzer Milane *Milvus migrans* nach Ringfunden. Der Ornithologische Beobachter 64: 34-51.
- Schönfeld M 1989: Ausbreitung, Zug und Überwinterung der Beutelmeise, Remiz pendulinus, nach Ringfunden bis 1987. Hercynia 26: 362-386.
- Theiss N 1993: Über Zug, Ausbreitung und Überwinterung der Beutelmeise *Remiz pendulinus* anhand von Ringfunden am Obermain zwischen 1980 und 1992. Ornithologischer Anzeiger 32: 89-116.
- Vahatalo AV, Reinio K, Lehikoinen A & Lehikoinen E 2004: Spring arrival of birds depends on the North Atlantic Oscillation. Journal of Avian Biology 35: 210-216.
- Valera F, Rey P, Sanchez-Lafuente AM & Munoz CJ 1993: Expansion of penduline tit (*Remiz pendulinus*) through migration and wintering. Journal für Ornithologie 134: 271-282.
- Zalakevicius M & Zalakeviciute R 2001: Global climate change impact on birds: a review of research in Lithuania. Folia Zoologica 50: 1-17.
- Zink G 1975: Der Zug europäischer Singvögel II (Wiesenpieper): 7. Vogelzug-Verlag, Möggingen.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Vogelwarte - Zeitschrift für Vogelkunde

Jahr/Year: 2005

Band/Volume: <u>43_2005</u>

Autor(en)/Author(s): Armbruster Georg F. J., Renz Deborah, Schweizer Manuel

Artikel/Article: Eine dreijährige Feldstudie zum sichtbaren Frühjahrszug am Bodensee

(Süddeutschland) 171-178