Original-Mitteilungen.

Die Herren Autoren sind für den Inhalt ihrer Publikationen selbst verantwortlich und wollen alles Persönliche vermeiden.

Die Siebetechnik zum Aufsammeln der Terricolfauna (nebst Bemerkungen über die Oekologie der im Erdboden lebenden Tierwelt).

Von Dr. Karl Holdhaus, Wien.

Der Erdboden (oder schlechthin "Boden") ist die oberste Ver-

witterungsschicht der festen Erdrinde.')

Unter Terricolfauna verstehe ich die Summe aller jener Tierformen, welche im Erdboden leben. Terricole Arten finden sich in den verschiedensten Tiergruppen, viele dieser Formen verbringen ihr ganzes Leben im Boden, andere sind nur während eines bestimmten Entwicklungsstadiums terricol. Die Terricolfauna ist eine der artenreichsten und wichtigsten Biocoenosen der einheimischen Lebewelt. Sie ist wissenschaftlich interessant durch eine Fülle merkwürdiger Anpassungen und durch eigenartige geographische Verbreitung vieler ihrer Vertreter. Das Studium der Terricolfauna besitzt auch praktische Bedeutung, denn die im Boden lebende Tierwelt übt weitgehenden und ungemein günstigen Einfluss auf die physikalische und chemische Beschaffenheit des Bodens Durch die Wirksamkeit der terricolen Tiere wird die Zersetzung organischer Substanzen beschleunigt und die namentlich bei schweren Bodenarten für die Pflanzenwelt so wichtige Krümelung des Bodens ausserordentlich befördert.²) Andererseits treten gewisse terricole Tiere, welche lebende Wurzeln angreifen, als Schädlinge der Landwirtschaft auf und verdienen deshalb unser besonderes Interesse.

Unsere Kenntnis der Zusammensetzung und Oekologie der Terricolfauna ist derzeit leider noch sehr unzureichend. Es ist dies teilweise wohl auch dem Umstande zuzuschreiben, dass das Auffinden dieser oft äusserst kleinen und trägen Tiere erhebliche Schwierigkeiten bietet. Das wichtigste Instrument für die Aufsammlung der Terricolfauna ist das Sieb. Viele im Boden lebende Tiere können wir nur durch kunstgerechte Verwendung des Siebes erlangen. Eine erfolgreiche Explorirung der Terricolfauna ist daher nur möglich bei richtiger Handhabung der Siebetechnik.

Diese Definition ist entnommen aus Ramann, Bodenkunde, II. Aufl. (Berlin 1905), pag. 1.
 Ueber die Tätigkeit der Regenwürmer im Boden finden sich zusammen-

²⁾ Ueber die Tätigkeit der Regenwürmer im Boden finden sich zusammenfassende Darstellungen mit Anführung der neueren Literatur beispielsweise bei Ramann, Bodenkunde, 2. Aufl., pag. 122—125, und Warming, Lehrbuch der oekologischen Pflanzengeographie, 2. Aufl. (Berlin 1902), pag. 93, 94. — Sehr interessante Beobachtungen über die bodenbildende Tätigkeit von Insekten in Norddeutschland (Gegend von Reppen) veröffentlichte Keilhack in (Zeitschrift Deutsch. Geol. Ges., Berlin, Ll. (1899), Verhandl. pag. 138—141). In Gegenden, in denen der Boden aus sandreichen Schottern (Sande mit vielen eingelagerten Steinen) besteht, sinken diese Steine infolge der minirenden Tätigkeit der im Boden wühlenden Insekten (Tetramorium, Sandwespen, Geotrupes, Cicindelalarven) allmählich in die Tiefe, während gleichzeitig der feine Sand von den Tieren in die Höhe geschafft wird. Es bildet sich auf diese Weise im Laufe der Zeit eine 2—4 dm mächtige oberste Bodenschicht, die kein grobes Material mehr enthält, sondern nur aus feinem Sand und erdigen Bestandteilen zusammengesetzt ist. Der Boden wird dadurch naturgemäss wesentlich verbessert. Der Boden wird dadurch naturgemäss wesentlich verbessert.

Durch die vereinten Bemühungen italienischer und österreichischer Entomologen hat die Siebetechnik in den letzten Jahren eine weitgehende Vervollkommnung erfahren. Die wenigsten dieser neuen Erfahrungen und Sammelmethoden sind bisher publiziert. Ich gebe im folgenden eine möglichst knappe zusammenfassende Darstellung der Siebetechnik unter besonderer Berücksichtigung dieser neuen Methoden und entspreche dadurch einem vielfach geäussertem Wunsche. Zunächst seien indess einige oekologische Eigentümlichkeiten der Terricolfauna besprochen, deren Kenntnis beim Sammeln terricoler Tiere von Wichtigkeit ist.

Zur Kenntnis der Oekologie der Terricolfauna.

An der Zusammensetzung der Terricolfauna beteiligen sich neben mikroskopischen Tieren (Protozoen, Rotatorien, winzige Nematoden, Tardigraden etc.) in erster Linie verschiedene Würmer, Arachniden, Myriopoden, Insekten, Mollusken und eine geringe Zahl von Wirbeltieren.

Terricole Tiere finden sich in jedem Boden, der nicht durch irgendwelche Momente (Vergiftung, dauernde vollständige Austrocknung oder Durchfrierung) für Organismen überhaupt unbewohnbar ist. Aber da viele terricole Tiere sehr spezielle Lebensbedürfnisse und Anpassungen zeigen, ist die Fauna des Bodens je nach den vorhandenen Existenzbedingungen (physikalische und chemische Beschaffenheit des Bodens, Klima, Vegetation) sehr verschieden.³)

Einen grossen Einfluss auf die Beschaffenheit der Terricolfauna übt die Vegetation. Es gibt viele terricole Tierformen, welche in ihrer Existenz fast ausschliesslich an den Wald oder doch an das Vorkommen von Bäumen oder Sträuchern gebunden sind. Diese Bevorzugung des Waldes erklärt sich wohl in erster Linie aus dem Bedürfnis dieser Arten nach einem bestimmten Mass von Feuchtigkeit. Die Bäume des Waldes bewahren den Boden vor Insolation, eine Decke abgefallenen Laubes breitet sich an vielen Stellen schützend über das Erdreich, beide Faktoren wirken in hohem Masse feuchtigkeitskonservierend. Neben diesen, die Feuchtigkeit des Waldes liebenden Arten, gibt es natürlich viele andere, welche in waldfreiem Terrain leben. Aber ihre formenreichste und eigenartigste Entfaltung zeigt die Terricolfauna doch im Walde. Die Terricolfauna des Laubwaldes ist im allgemeinen artenreicher als jene des Nadelwaldes. Nicht wenige waldliebende terricole Tiere (z. B. viele Blindkäfer) scheinen den Nadelwald zu meiden.

Von grosser Bedeutung für die Terricolfauna ist die Beschaffenheit des Bodens selbst. Die an Ort und Stelle aus festem Gestein hervorgegangenen Bodenarten, wie sie namentlich dem Gebirge (aber auch den aus festem Gestein bestehenden Ebenen!) eigen sind, beherbergen eine wesentlich andere Fauna als die aus lockerem Gestein (Schotter, Sand, Lehm, Löss) entstandenen Böden. Nach ihrem Verhalten zu den verschiedenen Bodenarten lassen sich innerhalb der Terricolfauna4) folgende Gruppen unterscheiden:

1. Gesteinsindifferente Arten, die in jedem Boden (sowohl im Gebirge als auf lockerem Gestein) leben können. Die Zahl dieser

<sup>s) Ein sehr eigenartig modifiziertes Glied der Terricolfauna ist die Höhlenfauna. In den folgenden Ausführungen wird die Höhlenfauna nicht berücksichtigt.
des gemässigten Klimas. Für die Tropen fehlen Untersuchungen. In Nordeuropa hat die Eiszeit sekundäre Verhältnisse geschaffen.</sup>

Arten ist eine sehr grosse, sie besitzen meist eine weite Verbreitung und bilden die Bodenfauna der grossen Ebenen und des Nordens.

2. Petrophile Arten, die nur auf festem Gestein (d. h. in den an Ort und Stelle aus festem Fels hervorgegangenen Bodenarten) leben können. Diese Arten besitzen im Durchschnitt eine um vieles geringere Verbreitung, sie bevorzugen das Gebirge und treten nur an solchen Stellen in die Ebene hinaus, wo deren Untergrund aus festem Gestein besteht.5)

3. Psammophile Arten, die nur auf (tiefgründigem) Sandboden leben. Es scheint namentlich in wärmeren Klimaten (Mittelmeerländer) Tiere zu geben, die ausschliesslich im Sand leben und jede andere Bodenart meiden. Untersuchungen hierüber wären sehr wünschenswert.

4.? Halophile Arten. Ob es Tiere gibt, die nur in salzhaltigem Boden zu leben vermögen, scheint mir einigermassen zweifelhaft.

Möglichkeit besteht.

Die gesteinsindifferenten Arten sind nur bis zu dem Grade gegen Differenzen der Bodenbeschaffenheit gleichgiltig, als sie, soweit wir wissen, keinen Boden prinzipiell meiden. Im übrigen wird auch die gesteinsindifferente Fauna durch den Boden beeinflusst, aber dieser Einfluss äussert sich im wesentlichen in grösserem oder geringerem Individuenreichtum, nicht in dem Fehlen oder Vorhandensein ganzer Artenkomplexe. In der Ebene ist die Terricolfauna unter sonst gleichen Umständen auf nährstoffreichem Lehmboden wesentlich individuenreicher als auf armem Sand- oder Schotterboden.

In tiefgreifender Weise wird die petrophile Terricolfauna durch die Bodenbeschaffenheit beeinflusst. Die verschiedenen Böden des Gebirges zeigen in ihrem Verhalten zur Terricolfauna wesentliche Differenzen. Manche Gesteine tragen eine sehr reiche terricole Tierwelt, auf anderen Gesteinen ist die petrophile Terricolfauna um vieles ärmer an Individuen, oft auch an Arten. Im allgemeinen lässt sich sagen, dass jene Gesteine, die bei der Verwitterung einen nährstoffreichen Boden von hoher Wassercapacität ergeben, eine sehr viel reichere Terricolfauna tragen, als Gesteine, deren Verwitterungsrinde geringen Nährstoffgehalt oder geringe Wassercapacität besitzt. Faunistisch sehr reiche Böden geben daher die meisten Kalke⁶) und basischen Eruptivgesteine, quarzarme Sandsteine und Conglomerate, kalkreiche Tonschiefer, sowie die meisten guarzarmen kristallinen Schiefer. Faunistisch sehr arme Böden geben Dolomit, Quarzit und quarzreiche Sandsteine und Conglomerate, sehr saure Eruptivgesteine und kristalline Schiefer, manche sehr schwer verwitternde Tonschiefer sowie die tertiären

⁶) Eine Ausnahme bilden sehr reine Kalksteine, die bei der Verwitterung nur einen minimalen Rückstand an toniger Substanz geben. Solche Kalke treten selten in grösserer Mächtigkeit auf. — Eine interessante Untergruppe innerhalb der Petrophilfauna sind die kalkliebenden Tiere (viele Landschnecken).

⁵) Welche äusseren Faktoren es den petrophilen Arten verwehren, in lockeres Gestein hinauszutreten, ist noch nicht festgestellt. Jedenfalls spielen sowohl chemische als physikalische Differenzen dieser Böden eine Rolle. Eine intermediäre Stellung zwischen lockerem und festem Gestein nehmen gewisse mangelhaft verfestigte Sandsteine und die tertiären Tone ein. Die Fauna dieser Gebilde ist eine sehr verarmte Petrophilfauna mit Beimengung und numerischer Prävalenz gesteinsindifferenter Elemente. Ich studierte dieselbe heuer im Tertiärbecken von Siena. — Ich würde den hier in Vorschlag gebrachten Terminus "petrophil" gerne durch einen passenderen Ausdruck ersetzen, wenn sich ein solcher fände. Die übrigen an dieser Stelle verwendeten Termini sind in der Literatur ein-

Tone. Eine intermediäre Stellung nehmen gewisse Sandsteine und Conglomerale, mässig quarzreiche Eruptivgesteine, kalkige Dolomite, manche kristallinen Schiefer etc. ein. Die von Ramann (Bodenkunde, 2. Aufl., pag. 214, 215) in Hinblick auf die Beschaffenheit der Vegetation gegebene Wertigkeitsskale der Gesteine hat ihre volle Giltigkeit auch für die Fauna. 1ch sammelte meine diesbezüglichen, recht umfangreichen Erfahrungen innerhalb der letzten sechs Jahre auf zahlreichen Exkursionen und grösseren Sammelreisen in verschiedenen Teilen von Mittel- und Südeuropa. Ueber das faunistische Verhalten tropischer und arktischer Böden liegen keine Untersuchungen vor.

Neben der Beschaffenheit des Gesteins übt gewiss auch das Streichen und Fallen der Schichten einen zwar untergeordneten, aber doch merkbaren Einfluss auf die Fauna aus. Es ist für die physikalische Beschaffenheit (Feuchtigkeit, Reichtum an Steinen) eines Bodens nicht gleichgiltig, ob die Schichten flach liegen oder steil gestellt sind, ob sie im Sinne des Gehänges streichen und fallen oder ob die freien Schichtenköpfe aus dem Boden herausragen. Leider sind meine Beobachtungen nach dieser Richtung noch sehr lückenhaft und ich muss mich darauf beschränken, an dieser Stelle auf dieses Problem aufmerksam zu machen.

Von wesentlicher Bedeutung für die Zusammensetzung der Terricolfauna ist die Art der Humusbildung im Boden. Die Zersetzung der im Boden enthaltenen abgestorbenen Pflanzenreste geht je nach den lokalen Verhältnissen in sehr verschiedener Weise vor sich. Unter bestimmten Umständen (z. B. auf sehr nährstoffarmem Boden oder bei hochgradigem Luftabschluss, Uebermass an Wasser etc.) kommt es zur Bildung von sog. saurem Humus. Dieser saure Humus enthält verschiedene freie Säuren (Essigsäure, Ameisensäure etc.), welche für die meisten Tiere giftig wirken. Derartige Böden sind daher äusserst tierarm. Bei einiger Uebung lassen sich solche vergiftete Böden im Terrain an ihrem Habitus unschwer erkennen. Die mitunter ungemein tiefen Lagen abgestorbenen Laubes sind meist dicht versponnen und verfilzt und lassen sich in zusammenhängenden Decken abziehen, die tieferen Humusschichten zeigen oft eine eigenartige morsche oder faserige Beschaffenheit.

Einen grossen Einfluss auf die Beschaffenheit der Verwitterungsrinde übt das Klima aus. Ein und dasselbe Gestein liefert unter verschiedenen klimatischen Verhältnissen ganz verschiedene Böden. Ich verweise auf die diesbezüglichen Ausführungen in Ramann's "Bodenkunde". Für die Beschaffenheit der Fauna sind die auf diese Weise entstandenen "klimatischen Bodenzonen" jedenfalls von grösster Bedeutung"), doch liegen hierüber keine Untersuchungen vor.

Im Gebirge ist die Streichungsrichtung der Gehänge nicht ohne Bedeutung für den Reichtum der Terricolfauna. Sonnseitige Abhänge zeigen in der Regel eine ärmere Terricolfauna als die nach Norden blickenden Gehänge. Die reichste Terricolfauna findet sich meist im Grunde feuchter, schattiger Gräben. Auch der Grad der Neigung der Abhänge ist von Wichtigkeit.

⁷⁾ Man vergleiche beispielsweise die bei Ramann, Bodenkunde, 2. Aufl., pag. 394, gegebene Bodenkarte von Europa mit den interessanten Verbreitungskarten bei Scharff, European Animals, pag. 30 (Saxifraga umbrosa), pag. 89 (Geomalacus maculosus) und pag. 96 (Elona quimperiana).

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Zeitschrift für wissenschaftliche Insektenbiologie

Jahr/Year: 1910

Band/Volume: 6

Autor(en)/Author(s): Holdhaus Karl

Artikel/Article: Die Siebetechnik zum Aufsammeln der Terricolfauna. 1-4