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Abstract

Fungi today occur on virtually every plant part, living and dead, and represent a significant proportion of fungal diversity. Arborescent 

seed ferns characterized by large, tongue-shaped leaves with reticulate venation (Glossopteris) represent the dominant floral element 

in the Permian of Gondwana. However, documented evidence of fungi associated with the leaves of these plants is exceedingly rare. 

Partially degraded Glossopteris leaves from two upper Permian permineralized peat deposits from Antarctica yield scattered evidence of 

fungal colonization in the form of hyphae, spores, sporangia, and mycelia. Intact leaves from the same deposits are typically free of fungi, 

suggesting that the fungi in the degraded leaves were saprotrophs on the forest floor, rather than colonizers of living leaves. We hypoth-

esize that the scarcity of fungi associated with Antarctic Glossopteris leaves may be related to structural and physiological adaptions of 

the plants to the extreme conditions that governed late Paleozoic polar ecosystems. 
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Zusammenfassung

Lebende und tote Pflanzenteile besiedelnde Pilze stellen heute einen großen Teil der Gesamtdiversität der Pilze dar. Baumförmige 

Samenfarne mit großen, zungenförmigen Blättern mit Netznervatur (Glossopteris) waren sehr weit verbreitet im Perm von Gondwana. 

Nachweise für Pilze auf und in den Blättern dieser Pflanzen sind allerdings bis heute sehr selten. Verrottete und zum Teil zerstörte Glos-

sopteris Blätter aus permineralisiertem Torf von zwei Fundstellen in der Antarktis weisen Spuren einer Besiedlung durch Pilze in Form 

von Hyphen, Sporen, Sporangien und Myzelien auf. Intakte Blätter aus denselben Torfen sind allerdings in der Regel frei von Pilzen, was 

vermuten läßt, dass die Pilze in den verotteten Blättern saprotroph waren und nicht lebende Blätter besiedelten. Das Fehlen von Pilzen 

auf/in intakten Glossopteris Blättern könnte mit bestimmten Anpassungen der Pflanzen an die extremen Bedingungen zusammenhängen, 

denen die jungpaläozoischen polaren Ökosysteme ausgesetzt waren.

Schlüsselwörter: Collinson Ridge, Gondwana, Jungpaläozoikum, Permineralisation, polare Wälder, Saprotrophismus, Skaar Ridge

1. Introduction 

Although plant leaves constitute a harsh environ-
ment due to several abiotic and biotic factors (e.g., 
temporary nutrient availability, extreme fluctuations 
in humidity, temperature, gas exchange gradients, 
and ultraviolet radiation; see Goodman & Weisz 
2002), they are inhabited by a remarkable variety of 
different organisms, including bacteria, fungi, algae, 
and small animals (Hill 1977; Lindow & Brandl 2003; 
Lill & Marquis 2004). Many of the studies investigat-
ing microbial life on and in the leaves of extant plants 
focus on fungi because these organisms are particu-
larly abundant, diverse, and often play important 

roles in the life history biology of their hosts (e.g., 
Andrews & Harris 2000; Stone et al. 2000; Arnold 
2007; Rodriguez et al. 2009; Osono 2014). 

The fossil record of leaf-inhabiting fungi is predo-
minately composed of Cenozoic epiphyllous fungi 
(e.g., Dilcher 1963, 1965; Selkirk 1972; Lange 1978; 
Phipps 2001, 2007; Phipps & Rember 2004), while 
there is relatively little evidence to date of pre-Cre-
taceous fungi associated with leaves, with the ex-
ception of several reports from the Carboniferous 
(Barthel 1961; Krings 2001; Krings et al. 2009, 2010, 
2011; Dotzler et al. 2011). The main difficulty in stu-
dying fungi associated with pre-Cretaceous leaves 
is that the details needed for systematic assignment 
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Glossopteris leaves comes from Skaar Ridge (84º 
49’ 11.8” S, 163º 20’ 37.0” E; 2300 m, 8600 ft) lo-
cated within the Buckley Formation near the Beard-
more Glacier Area, Queen Alexandra Range, central 
Transantarctic Mountains, Antarctica (for details on 
the geological setting, refer to Barrett et al. 1986; 
Isbell 1990; Collinson et al. 1994). Additional mate-
rial, also late Permian in age, comes from a lens of 
silicified peat, 6 m across and 0.6 m thick, within a 
medium-grained sandstone on Collinson Ridge (85º 
13’ S, 175º 21’ W), presumably located in the lower 
part of the Fremouw Formation, central Transantarc-
tic Mountains, Shackleton Glacier area (details on 
the geological setting can be found in Collinson & 
Hammer 1996; McManus et al. 2002).

Specimens were prepared according to the stan-
dard thin-section techniques outlined in Hass & 
Rowe (1999). Pieces of peat were mounted on mi-
croscope slides using Hillquist 2-part A-B epoxy 
compound, and cut to a thickness of ~250 µm. The 
wafer was then ground to a thickness of ~50–65 µm 
and analyzed in transmitted light. Digital images were 
captured with a Leica DC500 digital camera and 
processed using Adobe Photoshop CS 6. Images of 
the same specimen were recorded at multiple focal 
planes and stacked to produce composite images 
(Pl. 1, Figs 2, 5–7, 9, 10, 13–17 in this study; e.g., 
Bercovici et al. 2009). Measurements were taken 
using ImageJ 1.48b software (Abràmoff et al. 2004). 
Specimens and slides are deposited in the Paleobo-
tanical Collections, Biodiversity Institute, University 
of Kansas (KUPB) under accession numbers KUPB 
15312–15375, 19967–19969, and 30713–30745.

3. Results

3.1 Host leaves

Glossopteris leaves from both localities are mostly 
preserved in a more or less advanced state of deg-
radation, and thus lack diagnostic characters that 
could be used to assign them to a species; intact 
leaves also occur but are comparatively rare. Para-
dermal sections of the leaves show the large meshes 

are often not preserved or lost through fossil prepa-
ration (Taylor et al. 2011). Undeterminable hyphal 
fragments and propagules are usually the only evi-
dence of the presence of fungi on/in fossil leaves. 

There is only one record of fungi associated with 
Permian leaves from Antarctica (Holdgate et al. 2005: 
fig. 14i). This scarcity of documented evidence is sur-
prising since structurally preserved Permian leaves 
occur in abundance in several permineralized peat 
deposits and have been studied intensively (e.g., 
Pigg 1990; Taylor & Taylor 1990; Pigg & Taylor 1993; 
Li et al. 1994; McLoughlin & Drinnan 1996; Pigg & 
McLoughlin 1997; Hilton et al. 2001; McManus et 
al. 2002). Moreover, foliar fungi are extremely wide-
spread in modern ecosystems (Schulz & Boyle 2005). 
The most commonly found leaves in the Permian 
peats of Antarctica are those of Glossopteridales, 
an extinct group of seed plants that dominated the 
vegetation of Gondwana during the Permian (Taylor 
et al. 2009). Glossopteris leaves are lanceolate to 
tongue-shaped, entire margined, and characterized 
by a venation consisting of a strong midrib made up 
of multiple vascular strands, and second-order veins 
forming a reticulate pattern by frequent anastomoses 
(Pant & Singh 1974; Trivett & Pigg 1996). 

Permineralized Glossopteris leaves and leaf mats 
(i.e., dense accumulations of leaves) are known from 
two localities in Antarctica, i.e. Skaar Ridge (Pigg 
1990; Schwendemann 2010) and Collinson Ridge 
(McManus et al. 2002). In this study, we describe 
a variety of fungal remains that are associated with 
these leaves or occur in the peat matrix surround-
ing the leaves. The fungi were probably not foliar 
epiphytes or endophytes, but rather belonged to the 
community of saprotrophs that were involved in the 
decomposition of dead plant matter on the forest 
floor. This discovery contributes to a more complete 
understanding of the multiple associations and inter-
actions that sustained the polar forest ecosystems 
of Antarctica during the Permian. 

2. Material and methods

Late Permian permineralized peat containing 

Plate 1: Fungal remains associated with Permian Glossopteris leaves from Antarctica. (1) Peat containing highly degraded Glossopteris 
leaves (L) in cross section; brackets denote leaf ends; slide no 30713; scale bar = 250 µm. (2) Vascular bundle of Glossopteris containing 
septate hypha (arrow); slide no 30713; scale bar = 25 µm. (3) Degraded mesophyll containing chytrid-like structure with minute filament 
(arrow) and possible discharge opening; slide no. 30713; scale bar = 5 µm. (4) Chytrid-like organism with discharge pore (arrow); slide no. 
30714; scale bar = 5 µm. (5) Hypha in cross section on leaf surface (arrow); slide no. 30715; scale bar = 10 µm. (6) Leaf with preserved 
epidermis (Epi) showing fungal hyphae (arrows) in mesophyll and on adaxial surface; slide no. 30716; scale bar = 50 µm. (7) Hyphae pen-
etrating mesophyll cell wall (arrow); slide no. 30717; scale bar = 25 µm. (8) Degraded Glossopteris leaf (epidermis of leaf = Epi) containing 
clusters of spores (arrow); slide no. 30714, scale bar = 250 µm. (9) Detail of Pl. 1, Fig. 7, showing cluster of spores (S), each enveloped in 
a mantle composed of septate, thickened toruloid hyphae (arrows); scale bar = 10 µm. (10) Detail of Pl. 1, Fig. 9, showing hyphal mantle; 
scale bar = 5 µm. (11) Fungal mycelium (M) in matrix between Glossopteris leaves (vascular bundle = VB); slide no. 30715; scale bar = 100 
µm. (12) Detail of Pl. 1, Fig. 9, showing largely unbranched hyphae forming a mycelium; scale bar = 25 µm. (13, 14) Putative chlamydo-
spores; white arrow in Pl. 1, Fig. 11 indicates hyphal attachment, black arrow in Pl. 1, Fig. 11 and white arrow in Pl. 1, Fig. 12 show internal 
spherules (probably reproductive units of mycoparasites); slides no. 30718 and 30719; Scale bars = 25 µm. (15) Small fungal spores (S); 
slide no. 30720; scale bar = 25 µm. (16) Detail of spore type in Pl. 1, Fig. 15 showing surface ornamentation (arrow); scale bar = 10 µm. 
(17, 18) Combresomyces-like putative peronosporomycete oogonium; arrows indicate papillations of oogonial wall bearing antler-like 
extensions; slides no. 30721 and 15366; scale bars = 25 µm.
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attributable to the fungus-like Peronosporomycetes, 
have been discovered in the ambient peat matrix 
surrounding the Glossopteris leaves. These have 
been designated as numbered morphotypes be-
cause each lacks sufficient characters to assign it 
formally to a taxonomic category. 

Fungal reproductive units that display a hyphal at-
tachment are all terminal, and there is no evidence of 
the parental system on which they were produced. 
Morphotype 1 is ~40 µm in diameter; wall features 
are not discernible. Some of the units contain be-
tween 1 and 3 internal spherules, each approximate-
ly 10 µm in diameter. Morphotype 2 is slightly larger 
than type 1 (i.e. up to 50 µm in diameter) and the wall 
is up to 3 µm thick. The subtending hypha is approx-
imately 5 µm in diameter. Internal spherules present 
in some of the specimens range from 6 to 10 µm in 
diameter (black arrow in Pl. 1, Fig. 13). Morphotype 
3 is similar to type 2, up to 45 µm in diameter, but 
the wall is thinner (<2 µm thick). This type is only 
found within fragments of Vertebraria root tissue co-
occurring with the leaves in the litter mats. Morphot-
ype 4 is slightly pyriform, approximately 35 µm at the 
widest point, and possesses a wall 4–5 µm thick; a 
hyphal attachment may be visible at the narrow end. 
Morphotype 5 is ~80 µm in diameter and has a wall 
that is 6–8 µm thick; small spherical structures may 
be present in the lumen (arrow in Pl. 1, Fig. 14). Mor-
photype 6 ranges from 15 to 25 µm in diameter and 
occurs within degrading plant tissues and the ma-
trix, and at varying focal planes reveals some surface 
ornamentation (Pl. 1, Figs 15, 16). Morphotype 7 is 
approximately 40 µm in diameter, with a distinctly 
two-layered wall that reaches 5–7 µm in thickness. 
Morphotype 8 is also characterized by a two-layered 
wall up to 8 µm thick, but is up to 50 µm in diameter 
and shows a blunt attachment point.

Pyriform to ovoid structures up to 80 µm in di-
ameter that occur scattered throughout the peat 
closely resemble the fossil genus Combresomyces, 
and thus are interpreted as oogonia of members of 
the fungus-like Peronosporomycetes (see Dotzler 
et al. 2008; Schwendemann et al. 2009; Slater et al. 
2013). All are characterized by a surface ornament 
composed of antler-like extensions positioned on 
hollow, column-like or broadly triangular papillations 
of the wall (Pl. 1, Figs 14, 17). Moreover, most occur 
at the tip of a short segment of the parental hypha; a 
septum is sometimes visible between the oogonium 
and subtending hypha. One specimen of this type 
represents the only microorganism recorded to date 
from the peat at Collinson Ridge (Pl. 1, Fig. 18). 

4. Discussion 

The fungal remains described here represent the 
first evidence of fungi associated with Glossopteris 
leaves from Antarctica. This discovery is important 
because documented evidence of fungi residing on 

that represent the second-order venation, and often 
also the prominent midrib, thus attesting to the af-
finities of the leaves to Glossopteris. In transverse 
section, the bundle sheath, when preserved, is com-
posed of thin-walled cells that sometimes include 
dark contents. Stomata are rarely preserved, but 
when observed, they are sunken. Typically the only 
remaining components of the leaf that are consis-
tent preserved are the parallel, thick-walled vascular 
bundles (Pl. 1, Fig. 1). 

More than 200 intact leaves and leaf fragments 
from Skaar Ridge and 50 fragmented leaves from 
Collinson Ridge were examined. Fungal remains 
were detected in ~10% of the degraded leaves and 
leaf fragments from Skaar Ridge, whereas the mate-
rial from Collinson Ridge yielded only a single mi-
croorganism remain. Interestingly, none of the intact 
Glossopteris leaves from either locality yielded evi-
dence of fungal colonization.

3.2 Fungi associated with Glossopteris leaves 

The most common fungal remains associated 
with degraded Glossopteris leaves are ramifying, 
septate hyphae (2–4 µm in diameter) that penetrate 
the walls of individual tracheids within the vascular 
bundles (Pl. 1, Fig. 2). Additional fungal remains in 
tracheids include spherical structures that fully oc-
clude the host cells, with attachment points at the 
base of the spheroidal structure to the host. In the 
highly degraded mesophyll of several leaves, small 
circular to pyriform structures occur that range from 
8–10 µm in diameter. Only one of these structures 
(Pl. 1, Fig. 3) shows what appears to be a rhizomyce-
lial attachment or subtending hypha/filament <1 µm 
in diameter. An additional feature of these structures 
includes a putative discharge pore (Pl. 1, Fig. 4). Oth-
er leaves show fungal hyphae extending along the 
leaf surface (Pl. 1, Fig. 5). Many of the leaves also 
contain tenuous hyphae, usually less than 1 µm in 
diameter, that branch at right angles and are septate 
(Pl. 1, Fig. 6). Leaves in which the mesophyll tissue 
is more or less intact may also contain larger septate 
hyphae that directly penetrate through the cell walls 
(Pl. 1, Fig. 7).

Clustered spores surrounded by what appears to 
be a hyphal mantle or mycelium have been found in 
two transversely sectioned leaves (Pl. 1, Figs 8, 9). 
Spores are up to 37 µm in diameter, and the interwo-
ven hyphae enveloping the spores are 2 µm in dia-
meter (Pl. 1, Fig. 9, 10). There is also a single speci-
men of a larger portion of a mycelium composed of 
interlaced, largely unbranched septate hyphae (Pl. 1, 
Figs 11, 12).

3.3 Fungal remains in the matrix surrounding  
the Glossopteris leaves 

Eight morphologically distinct types of fungal re-
productive units, as well as several types of remains 
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fungi associated with Glossopteris leaves is surpris-
ing because glossopterid seed ferns were dominant 
elements in many forest ecosystems across Gond-
wana, and have been intensely studied for more than 
150 years. One simple explanation for this apparent 
absence of evidence may be a general lack of inter-
est in fungi by the scientists studying Glossopteris 
leaves. Moreover, the research focus on the leaves 
might have created a collection bias for well-pre-
served specimens rather than those that are tattered 
or degraded. On the other hand, there might also be 
biological factors that have contributed to the scar-
city of fungi on and in Glossopteris leaves, especially 
from Antarctica. 

One factor may be the cuticle of Glossopteris 
leaves. The plant cuticle serves two principal func-
tions, i.e., as a hydrophobic barrier that prevents 
desiccation, and as a structural defense against sev-
eral adverse abiotic and biotic factors (Martin 1964; 
Kerstiens 1996; Nawarth 2006). Moreover, some leaf 
cuticles contain various secondary compounds that 
are effective as fungal deterrents (Canhoto & Graça 
1999; Domínguez et al. 2011). It is therefore possible 
to hypothesize that perhaps the cuticle of the Glos-
sopteris leaves from Antarctica contained especially 
high levels of substances with fungicidal properties. 
Geochemical analyses of Glossopteris leaves that 
might assess the chemical composition of the cuti-
cle have not been conducted to date. However, such 
techniques have been used with geologically young-
er fungus-infected and non-infected gymnosperms 
to assess the lipid content in the cuticle (Tu et al. 
2000). The results of this study indicate that the fungi 
in the infected specimens produced specific post-in-
fection degradational compounds, and thus we can 
infer that biogeochemical data on fungal interactions 
has the potential to be extracted from fossil plants. 

A second factor that may have contributed to the 
scarcity of leaf fungi associated with Antarctic glos-
sopterids concerns the physiology of the Antarctic 
glossopterid seed ferns. Antarctica has remained in 
approximately the same south polar position dur-
ing the majority of the Phanerozoic (Torsvik & Cocks 
2013). The paleogeographic position of the con-
tinent makes the late Paleozoic forest ecosystems 
of Antarctica a unique setting with no modern ana-
logue. Especially interesting are the light regimes, 
which would have comprised 4 months of 24-hours 
light exposure, 4 months of 24-hours total darkness, 
and 4 months of transitionary light regimes (Taylor 
& Ryberg 2007). One of the many research ques-
tions concerning these unique high-paleolatitude 
forests encompasses leaf longevity in glossopterids, 
i.e. whether the trees were deciduous or evergreen 
(Gulbranson et al. 2014). The presence of Glossop-
teris leaf mats has been used to suggest that the 
trees were deciduous (Axelrod 1984); however, re-
cent studies indicate that the forests contained 
mixed populations of evergreen and deciduous trees 
(Gulbranson et al. 2012, 2014). Schwendemann 

and in the leaves of glossopterid seed ferns, one of 
the dominant plant groups in Gondwana during the 
Permian, is generally scarce. We are aware of only 
two previous reports on fungal associations with 
Glossopteris, and these are from Indian compres-
sion material (Bajpai & Maheshwari 1987; Srivastava 
1993).

In general, modern fungal leaf endophytes are de-
fined functionally by their occurrence within asymp-
tomatic (i.e., lacking visible disease symptoms at the 
moment of detection) tissue of living leaves (Schulz 
& Boyle 2005). This is problematic when studying 
fossil material. Krings et al. (2009) therefore offered 
the suggestion that, with fossils, the designation fun-
gal endophyte should be understood as a strictly de-
scriptive term, and used for all fungi that occur within 
intact plant cells or tissues in which there are no vis-
ible disease symptoms. However, when assessing 
the nutritional mode(s) of fungi associated with fossil 
leaves, it is necessary to evaluate as to whether the 
host leaf was alive and functional when colonized by 
the fungus or in the process of decay. Colonization 
of living leaves can be inferred by structural features 
such as host responses (e.g., callosities). However, 
without such features the condition of the host at the 
time of colonization cannot normally be resolved.   

Although it is impossible at present to determine 
the nutritional mode(s) of the fungi associated with 
the Glossopteris leaves reported here, it is likely that 
the majority, if not all, were saprotrophs that were 
active in the degradation of organic matter on the 
forest floor, rather than colonizers of living leaves, or 
endophytes that acted as latent decomposers (Ra-
jala et al. 2014). Support for this hypothesis is the 
absence of fungi associated with intact Glossopteris 
leaves. Leaf litter communities today include multiple 
phyla of fungi that exhibit different types of nutrition-
al modes, including mutualism, saprotrophism, and 
parasitism (Voříšková & Baldrian 2013). The globose 
fungal reproductive units that occur in the peat ma-
trix (Pl. 1, Figs 11, 13) are interpreted as chlamydo-
spores produced by glomeromycotan fungi based 
on morphological similarities to the spores of certain 
extant Glomeromycota (e.g., Stürmer 2012). Many 
of the fossil chlamydospores occur in close proxim-
ity to narrow-diameter Vertebraria-type glossopterid 
rootlets that regularly co-occur with the Glossopteris 
leaves in the peat. Vertebraria rootlets have been 
shown to harbor endomycorrhizal fungi with affini-
ties to the Glomeromycota (Harper et al. 2013), and it 
is therefore highly probable that some of the spores 
described here represent the propagules of these 
mycorrhizal fungi. Other fungal remains that are 
spheroidal might represent chytrid-like organisms 
based on the presence of what appear to be dis-
charge pores (Pl. 1, Fig. 4) and rhizomycelial attach-
ments (Pl. 1, Fig. 3). Finally, the clustered spores/
sporangia enveloped in a hyphal mantle (Pl. 1, Figs 
7, 8) may have affinities to the Mucoromycotina. 

The general scarcity of documented evidence of 
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and thus would demonstrate the presence of fungi in 
the absence of body fossils (Harper et al. 2015). We 
hope that by reporting the scattered evidence that is 
available we will further stimulate interest in search-
ing out fungal remains in and on leaves throughout 
the geologic record, and thus increase the body of 
data that can be used to document precisely when 
and how certain types of fungal associations and in-
teractions with the phyllosphere initially evolved.
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