145–154 München, 31, 12, 1993

1993 ISS

ISSN 0373-9627

Foraminifera from the Jurassic (Callovian -Kimmeridgian) outcrop in Arda Area, Central Jordan

By

TALEB AL-HARITHI*)

With 2 Figures, 2 Tables and 2 Plates

ABSTRACT

Thirty two foraminiferal species were identified from nineteen samples taken from the uppermost fifty meters of the Jurassic Arda surface section. The microfaunal assemblages suggest a Callovian to Kimmeridgian age for the studied succession.

ZUSAMMENFASSUNG

Aus den obersten 50 Metern der Jura-Schichten des Arda-Profils (Jordanien) werden 32 Foraminiferenarten vorgestellt. Aufgrund der Mikrofauna ist das Alter mit Callov bis Kimmmeridge anzugeben.

1. INTRODUCTION

In the past the studies on the Jurassic of Jordan were focused mainly on the lithology and to a little extent on the biostratigraphy (LEBETY & HOSKINS 1905, COX 1925, MUR-WOOD 1925, BLAKE 1936, BLAKE & IONIDES 1939, AVNIMELECH 1945, WETZEL & MORTON 1959, VAN DEN BOOM & LAHLOUB 1962, BENDER 1968, ABED 1987 and AMEREH 1987). The paleontological aspects were partially treated by BASHA (1980: ostracods) and AQRABAWI (1987: macrofauna).

A lot of new data about the Jurassic were yielded during the eighties by oil exploration with many drilling wells in the course of the National Oil Exploration Project, which was initiated by the Natural Resources Authority of Jordan (NRA). These exploration data are an important contribution to the geology of Jordan, especially to the knowledge of the Jurassic system, the surface outcrops of which are restricted to limited areas in Central Jordan. The results show an increase in thickness of the Jurassic sediments from Central Jordan to the North and West and a dominance of sandy facies in the eastern and partially in the southern areas, while calcareous facies predominantly occur in the paleogeographically deeper areas in northern and western parts of Jordan.

^{*)} DR. TALEB AL-HARITHI, Department of Geology, University of Jordan, Amman - Jordan

2. THE ARDA SURFACE SECTION

The Arda area is situated about 35 kms WWN of Anuman (Fig. 1). Due to the severe tectonic movements in the course of the development of the Jordan Graben which were accompanied by faults and an extreme folding of rock units, only the uppermost 50 meters of the outcrop section could be studied in detail in the area of study.

Fig. 1: Location of the Arda Area.

This Jurassic succession is characterized lithologically by being mainly calcareous (Fig. 2). At the base it starts with some marly sandy clays, which are followed upwards by thick sequences (ca. 20 m) of clayey marls with secondary gypsum fissures. Above these marls a thick sequence of generally thin, more rarely thick bedded dolomites and limestones follows, which alternate with thin to medium thick marl beds rich in macrofossils (mainly brachiopodes; terebratulids and rhynchonellids). The uppermost part of the section, 6 meter thick, consists of dense compact dolomite beds. The Jurassic series underlie a thick sandstone sequence of Lower Cretaceous age.

19 soft samples (AR Samples), mainly marls to clayey marls in composition, were taken from the uppermost 50 meters of the Jurassic, prepared and analysed with respect to their faunal content. Table 1 gives an overview of the faunal content of the AR samples.

SAMPLE NR.	FAUNAL CONTENT	AR-18	fossiliferous: echinoid spines, bryozoans, holo-		
AR-1	brachiopodes and rare crinoid plates		thurian skeletal elements, desmons of coralline spon-		
AR-2	no fauna		ges, ostracodes and foraminifera		
AR-3	no fauna	AR-19	highly fossiliferous: crinoid elements, echinoic		
AR-4 + AR-5	highly fossiliferous: echinoid spines, holothurians, brachiopods, ostracodes and foraminifera		spines, bryozoans, bivalves, gastropods, holothurian skeletal elements, ostracodes and foraminifera.		
AR-6	echinoid spines, bryozoans, ostracodes and foraminifera	Table 1: Distr	oution of faunal groups in Arda samples		
AR-7	highly fossiliferous: brachiopods, echinoid spines, gastropods (moulds), crinoid elements, bivalves, fish teeth and foraminifera	Excluding those with cf. and up to generic level identified foraminifera taxa, all of the well identified species (except <i>Ammodiscus zaspelovac</i>) suggest a Callovian-Kimmeridgian age for the studied section (Table 2). In spite that NAGY et al. (1990) had reported <i>Ammodiscus zaspelovae</i> from the Port-			
AR-8	no fauna				
AR-9 + AR-10	crinoid plates, echinoid spines				
AR-11	no fauna	landian of 1	Norway, the detailed microscopic examination		
AR-12 - AR-14	no fauna	proved that both the Norwegian and the Jordanian specimens are alike in many aspects (e. g. fine grained to smooth wall, size, coiling). The only explanation, why this species is an index fossil to younger age in Norway is to assume that the ecology in Norway at Callovian-Kimmeridgian times was not suitable for the flourishing of this species.			
AR-15	foraminifera				
AR-16	bivalvia (internal moulds) and ? fish otolith				
AR-17	highly fossiliferous: brachiopods, echinoid spines, erinoid plates, holothurian elements, gastropods, desmons of coralline sponges, ostracodes and fora- minifera				

Foraminifera species	PRE-CALLOVIAN	CALLOVIAN	OXFORDIAN	KIMMERIDGIAN	POST-KIMMERIDGIAN	ARDA SAMPLES
Reophax barnardi				35	Sinai	AR-19
Reophax suevicus			38		Canada	AR-19
Ammobaculites agglutinana			6	6Fran	Britain ce	AR-19
Ammodiscus zaspelovae				· ·	Norway	AR=5
Verneuilinoides minuta				35	Sinai	AR-17 and AR 18
Ophthalmidium purtonensis			6	England		AR-17 and AR 18
Paramigros shinnawii		1			Egypt	AR-17 and AR 18
Eoguttulina liassica		6		England		AR-4 and AR-5
Astacolus ectypus		38	Canada			AR-19
Lenticulina magharaensis				35	Sinai	AR-4 and AR-4
Lenticulina quenstedti			-35		Sinai England	AR-19 and AR-4
Nodosaria metensis			35		Sinai	In most of the samples
Dentalina intorta		26	Germany			AR-5, AR-15, AR-17 and AR-18
Vaginulina "prima"					Britain	AR-5

Table 2: The well-identified foraminifera species of the Arda section and their stratigraphic position recorded from occurrences in some other regions (for references see end of the text).

3. SYSTEMATIC DESCRIPTION

For the sake of simplicity, the identified species are listed without mentioning their generic or family classification.

> Reophax barnardi SAID & BARAKAT, 1958 Pl. 1, Figs. 3-4

1958 *Reophax barnardi* n. sp. - SAID & BARAKAT: 238, pl. 4, fig. 7.

Remarks: Numerous specimens of this species were extracted from sample AR-19; in all aspects they can be compared with those described from the Kimmeridgian of Sinai by SAID & BARAKAT (1958).

Reophax suevicus Franke, 1936 Pl. 1, Figs. 1-2

1976 *Reophax suevicus* FRANKE, 1936. - SOUAYA: 266, pl. 5, fig. 2.

Remarks: This species was reported from Callovian to Tithonian rocks of Canada (SOUAYA 1976). In Arda section tens of specimens could be found in sample AR-19; they are characterized by being coarsely agglutinated, tapering and slightly compressed. Ammobaculites agglutinans (D'ORBIGNY, 1846) Pl. 1, Figs. 5-7

1981 Ammobaculites agglutinans (D'ORBIGNY, 1846). -BARNARD et al.: 388, pl. 1, fig. 2.

Remarks: This species is abundant in sample AR-19. It is characterized by having 4 chambers in the planispirally coiled, slightly compressed initial stage which is followed by 2 to 3 uniserial inflated chambers; surface coarsely agglutinated; umbilicus slightly biconcave.

The species is reported from the Middle Jurassic to the Lower Oxfordian of Great Britain (BARNARD et al. 1981, MORRIS & COLEMAN 1989, SHIPP 1989) and the early Kimmeridgian of France (BARNARD & SHIPP 1981).

Ammodiscus zaspelovae KOSYREVA, 1972 Pl. 1, Figs. 8-9

1990 Ammodiscus zaspelovae KOSYREVA. - NAGY et al.: 989, pl. 1, figs. 4-7.

Remarks: Numerous specimens of this species were present in sample AR-5. The number of whorls around the relatively large proloculus is 6 or more. As outlined by NAGY et al. (1990) this species is known from the Volgian (Portlandian) of Siberia and the Portlandian of Norway.

Haplophragmoides cf. goodenoughensis CHAMNEY, 1969 Pl. 1, Fig. 10

cf. 1976 *Haplophragmoides goodenoughensis* Chamney, 1969. - Souaya: 267, pl. 2, fig. 6.

Remarks: SOUAYA's specimens from Canada are of lowermost Cretaceous age. NAGY et al. (1990) recorded this species from the Portlandian and Lower Cretaceous of Norway. Jordanian specimens extracted from samples AR-4, AR-5 and AR-6 differ from those reported by SOUAYA in having the umbilical area somewhat inflated rather than deep. Both forms have the same number of chambers (12).

Haplophragmoides cf. tryssa LOEBLICH & TAPPAN, 1950 Pl. 1, Figs. 11-13

1976 Haplophragmoides sp. cf. H. tryssa Loeblich & Tappan. - Souaya: 267, pl. 6, fig. 14.

Remarks: The Arda specimens from samples AR-17 and AR-18 resemble in many aspects to those reported and figured

Plate 1

by SOUAYA (1976) from the Oxfordian rocks of Canada but differ in having more and slightly inflated chambers.

Verneuilinoides minuta SAID & BARAKAT, 1958 Pl. 1, Figs. 14-15

1958 Verneuilinoides minuta n. sp. - SAID & BARAKAT: 242, pl. 4, figs. 25 a-b.

Remarks: Specimens of this foraminiferal taxon are abundant in AR-18 and AR-17. They show high resemblance with those first identified and described by SAID & BARAKAT (1958) from the Kimmeridgian of Sinai.

> Ophthalmidium purtonensis BARNARD et al., 1981 Pl. 1, Figs. 16-17

1981 Ophthalmidium purtonensis n. sp. - BARNARD et al.: 399, pl. 1, figs. 19, 26; text-figs. 9 B, 1-5, 26.

Remarks: This species is common in samples AR-17 and AR-18; BARNARD et al. (1981) report it from the Lower Oxfordian of England.

Paramigros shinnawii Abd-Elshafy & Ibrahim, 1990 Pl. 1, Fig. 18

1990 Paramigros shinnawii n. sp. - Abd-Elshafy & Ibrahim: 25, pl. 4, figs. 1-2.

Remarks: The specimens of the Arda area correspond well to the description of this species by ABD-ELSHAFY & IBRAHIM, who reported it from Bathonian to Kimmeridgian rocks of Egypt. The species is common in samples AR-17 and AR-18.

Eoguttulina liassica (STRICKLAND, 1846) Pl. 1, Fig. 19

1981 Eoguttulina liassica (STRICKLAND, 1846). - BARNARD et al.: 426, pl. 3, fig. 20; text-fig. 29a.

Remarks: Arda specimens yielded from samples AR-4 and AR-5 are very close related to those reported by BARNARD et al. (1981) from Callovian to Oxfordian rocks of England.

Eoguttulina cf. polygona (Текqueм, 1864) Pl. 2, Figs. 1-2

1958 Eoguttulina cf. polygona (TERQUEM, 1864). - SAID & BARAKAT: 263, pl. 1, fig. 35; pl. 2, fig. 37; pl. 5, fig. 39.

Fig. 1-2	Reophax suevicus FRANKE, 1936 AR-19; Fig. 1: L = 630; Fig. 2: L = 670.
Fig. 3-4	Reophax barnardi SAID & BARAKAT, 1958 AR-19; Fig. 3: L = 1100; Fig. 4: L = 2525.
Fig. 5-7	Ammobaculites agglutinaus (D'ORBIGNY, 1846) AR-19; Fig. 5: L = 1100; Fig. 6: L = 1030; Fig. 7: L = 860.
Fig. 8-9	Ammodiscus zaspelovae Kosyreva, 1972 AR-5; Fig. 8: D = 210; Fig. 9: D = 195.
Fig. 10	Haplophragmoides cl. goodenoughensis Chamney, 1969 AR-6; D = 310.
Fig. 11-13	Haplophragmoides cf. tryssa LOEBLICH & TAPPAN, 1950 Fig. 11: AR-18, D = 630; Fig. 12, 13: AR-17; 12 LD = 510; Fig. 13: D = 440.
Fig. 14-15	Verneuilinoides minuta SAID & BARAKAT, 1958 Fig. 14: AR-17, L = 290; Fig. 15: AR-18, L = 270.
Fig. 16-17	Ophthalmidium purtonensis BARNARD, CORDEY & SHIPP, 1981 Fig. 16: AR-18, L = 215; Fig. 17: AR-17, L = 270.
Fig. 18	Paramigros shinnawii Abd-Elshafy & Ibrahim, 1990 AR-17, L = 350.
Fig. 19	Eoguttulina liassica (STRICKLAND, 1846) AR-5; L = 290.

(L = Length, D = max. Diameter, both in microns)

AL-HARITHI, T.: Jurassic Foraminifera

Remarks: *E. polygona* occurs over a wide stratigraphic range. It is recorded from Bajocian to Kimmeridgian strata of Sinai (SAID & BARAKAT 1958) and from Upper Callovian rocks of England (BARNARD et al. 1981). Arda specimens which can be attributed to this species with uncertainty only are common in samples AR-4 and AR-5.

Astacolus ectypus LOEBLICH & TAPPAN, 1950 Pl. 2, Fig. 3

1976 *Astacolus ectypus* LOEBLICH & ТАРРАЛ. - SOUAYA: 277, pl. 7, fig. 11.

Remarks: This species is a wide-ranging one. It is reported from the Sinemurian to the Middle Callovian of Canada by SOUAYA (1976). Arda specimens from sample AR-19 correspond in many aspects to those treated by SOUAYA: number of chambers approximately 13, keeled periphery, raised curved sutures which become thicker toward the umbilicus and in the initial growth stage, as well as a small radiate aperture at the extreme end of the test.

Lenticulina magharaensis SAID & BARAKAT, 1958 Pl. 2, Fig. 4

1958 Lenticulina magharaensis n. sp. - SAID & BARAKAT: 248, pl. 4, figs. 37a-b.

Remarks: This species was first reported from Kimmeridgian outcrops of Sinai. In the Arda section this species is common in samples AR-4 and AR-5.

Lenticulina quenstedti (GUMBEL, 1862) Pl. 2, Fig. 5

1958 Lenticulina quenstedti (GUMBEL, 1862). - SAID & BARAKAT: 248, pl. 3, fig. 24; pl. 5, fig. 34.

Remarks: Many well-preserved specimens were yielded from samples AR-19 to AR-4 of the Arda section. *L. quenstedti* is a wide-ranging fossil. It was reported from the Callovian to the Kimmeridgian from Sinai (SAID & BARAKAT, 1958). According to SHIPP (1989), it occurs in the northern hemisphere, from the Bathonian to the Kimmeridgian.

Lenticulina cf. sossipatrovae GERKE & IVANOVA, 1972 Pl. 2, Fig. 6

cf. 1990 Lenticulina sossipatrovae GERKE & IVANOVA in SAKS, 1972. - NAGY et al.: 997, pl. 6, figs. 12-16.

Remarks: The Arda specimens were found in AR-19; they differ from typical representatives of this species in having distinctive raised sutures and a broader last chamber.

According to NAGY et al. (with cited literature herein) *L.* sossipatrovae occurs in the Lowest Neocomian of Norway and the Volgian to Valanginian of Siberia.

Lenticulina cf. subalata (REUSS, 1854) Pl. 2, Fig. 7

cf. 1958 Lenticulina subalata (REUSS, 1854) - SAID & BARAKAT: 250, pl. 1, fig. 11; pl. 2, fig. 18; pl. 3, fig. 22; pl. 4, fig. 26.

Remarks: Arda specimens from samples AR-4 and AR-5 can rather be compared with the material described by BARNARD et al. (1981) than with the specimens of SAID & BARAKAT (1958). The Arda specimens have raised curved sutures and a plane to slightly concave umbilicus; a peripheral keel is lacking. *L. subalata* is a wide-ranging fossil; it is recorded from Bajocian to Kimmeridgian strata of Sinai (SAID & BARAKAT 1958) and from Oxfordian rocks of England (BARNARD et al. 1981).

Plate 2

Fig. 1-2	<i>Eoguttulina</i> ct. <i>polygona</i> (Тегодием, 1864) AR-4; Fig. 1: L = 275; Fig. 2: L = 325.
Fig. 3	Astacolus ectypus LOEBLICH & TAPPAN, 1950 AR-19; D = 1320.
Fig. 4	Lenticulina magharasensis SAID & BARAKAT, 1958 AR-4; D = 700.
Fig. 5	Lenticulina quenstedti (GOMBEL, 1862) AR-6; D = 700.
Fig. 6	Lenticulina cf. sossipatrovae GERKE & IVANOVA, 1972 AR-19; D = 1400.
Fig. 7	Lenticulina cf. subalata (REUSS, 1854) AR-4; D = 500.
Fig. 8	Lenticulina cf. varians (BORNEMANN, 1854) AR-5; D = 200.
Fig. 9	Frondicularia cf. lignaria Terqueм, 1866 AR-18; L = 300.
Fig. 10	<i>Vaginulina</i> , <i>prima</i> ⁴ LLOYD, 1958 AR-5; L = 3270.
Fig. 11	Nodosaria cf. nitidana BRAND, 1937 AR-5; L = 200.
Fig. 12	Dentalina intorta TERQUEM, 1870 AR-15; 630.
Fig. 13	Dentalina cf. pseudocommunis FRANKE, 1936 AR-17; L = 425.
Fig. 14	Paalzowella cf. feifeli aff. elevata (PAALZOW, 1932) AR-5; L = 800.
Fig. 15	Nodosaria metensis (TERQUEM, 1858) AR-5; L = 260.
Fig. 16	Pseudobolivina sp. 1 AR-18; L = 330.
Fig. 17	cf. <i>Lingulina</i> sp AR-4; L = 300.
Fig. 18	Pseudobolivina sp. 2 AR-17; L = 420.
Fig. 19	Pseudogaudryina sp AR-17; L = 370.

- Fig. 20 Palaeopolymorphina sp. AR-4; L = 310.
- Fig. 21 cf. Lingulonodosaria sp. AR-18; L = 440.
- Fig. 22 cf. Pseudogaudrynella sp. AR-5; L = 330.
- Fig. 23 Ellipsoglandulina sp. AR-4; L = 390.

(L = Length, D = max. Diameter, both in microns)

Zitteliana, 20, 1993

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at

AL-HARITHI, T .: Jurassic Foraminifera

Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.a

Lenticulina cf. varians (BORNEMANN, 1854) Pl. 2, Fig. 8

cf. 1981 Lenticulina varians (BORNEMANN, 1854). - BARNARD et al.: 417, pl. 2, fig. 25; text-fig. 19.

Remarks: In the Arda section this taxon rarely occurs in AR-5. Due to the somewhat poor preservation, the specimens can be attributed to *L. varians* with uncertainity only. *L. varians* is a wide-ranging fossil; its stratigraphic record extends from the Rhaetian up to the Upper Jurassic (COPFSTAKF & JOHNSON 1989). SAID & BARAKAT (1958) identified it in the Bajocian and the Kimmeridgian of Sinai and BARNARD et al. (1981) reported it from the Upper Callovian of England.

Frondicularia cf. lignaria TERQUEM, 1866 Pl. 2, Fig. 9

cf. 1989 *Frondicularia lignaria* Terquem, 1866. - Morris & Coleman: 224, pl. 6.3.8, fig. 5.

Remarks: Arda specimens from samples AR-17 and AR-18 differ from those of MORRIS & COLEMAN (1989) in having less ribbed sutures and fewer chambers in the last whorl (ca. 5). According to MORRIS & COLEMAN, *F. lignaria* occurs from the Aalenian to the Bathonian.

Nodosaria metensis (TERQUEM, 1863) Pl. 2, Fig. 15

1958 Nodosaria metensis (ТЕRQUEM, 1863). - SAID & Вакакат: 255, pl. 1, fig. 30; pl. 5, fig. 20.

Remarks: *N. metensis* is common in most of the samples of the Arda section. It is recorded from Bajocian and Kimmeridgian rocks of Egypt (SAID & BARAKAT 1958) and from the Aalenian of England (MORRIS 1982 in JENKINS & MURRAY 1989).

Nodosaria cf. nitidana BRAND, 1937 Pl. 2, Fig. 11

cf. 1958 Nodosaria nitidana BRAND. - SAID & BARAKAT: 255, pl. 5, fig. 2.

Remarks: The material from the Arda section (sample AR 5) is incompletely preserved. Only the last two chambers of the foraminifer can be found. It resembles *N. nitidana* in having inflated chambers, a radiate terminal aperture and depressed sutures. However, the identification at the species level is tentatively only. *N. nitidana* is reported from the Kimmeridgian of Sinai by SAID & BARAKAT (1958).

Dentalina intorta (TERQUEM, 1870) Pl. 2, Fig. 12

1989 Dentalina intorta (TERQUEM, 1870). - MORRIS & COLEMAN: 222, pl. 6.3.7, fig. 7.

Remarks: This species is represented by numerous specimens in samples AR-5, AR-15, AR-17 and AR-18. It is recorded from the Bajocian and Bathonian (MORRIS & COLEMAN 1989). In morphology the specimens from Jordan are very close to forms which are reported from Germany (LUTZE 1960: pl. 28, fig. 17). Dentalina cf. pseudocommunis FRANKE, 1936 Pl. 2, Fig. 13

cf. 1981 Dentalina pseudocommunis FRANKE, 1936. - BARNARD et al.: 406, pl. 2, fig. 2.

Remarks: The Arda specimens extracted from sample AR-17 are very similar to the material figured and described from Middle Callovian to Lower Oxfordian strata of England by BARNARD et al. (1981). The only difference is that the Arda specimens have 3 to 4 chambers in average, whereas those from England have 8.

Paalzowella cf. feifeli aff. elevata (PAALZOW, 1932) Pl. 2, Fig. 14

cf. 1960 Paalzowella feifeli aff. elevata (PAALZOW). - LUTZE: 485, pl. 33, fig. 11.

Remarks: Arda specimens from sample AR-5 differ from those recorded from the Lower Oxfordian rocks of Germany by LUTZE (1960) in being more cylindrical rather than conical.

Vaginulina ,prima' LLOYD, 1958 Pl. 2, Fig. 10

1989 Vaginulina ,prima⁶ LLOYD, 1958. - SHIPP: 260, pl. 6.4.3., fig. 8.

Remarks: Specimens from sample AR-5 correspond closely to the specimens figured and described by SHIPP (1989) in having 6-12 strong continous longitudinal ribs and a large uniserial thick-walled test. Many forms of this species were reported by LLOYD (1958, unpubl. Ph. D. Thesis, cited in SHIPP 1989) from Late Kimmeridgian rocks of Great Britain.

Pseudobolivina sp. 1 Pl. 2, Fig. 16

Remarks: Four specimens of samples AR-17 and AR-18 can be attributed to this genus.

Pseudobolivina sp. 2 Pl. 2, Fig. 18

Remarks: Specimens of this taxon occur rarely in samples AR-17 and AR-18.

Pseudogaudryina sp. Pl. 2, Fig. 20

Remarks: This species is represented by one specimen only (AR-17). It is characterized by having a highly inflated semitriangular initial part, and only two mostly round chambers in the uniserial growth stage.

Palaeopolymorphina sp. Pl. 2, Fig. 20

Remarks: The rare specimens of this taxon from sample AR-4 are similar to those described by BARNARD et al. (1981) from the Lower Oxfordian of England.

cf. *Lingulonodosaria* sp. Pl. 2, Fig. 21

Remarks: The taxon occurs rarely in AR-17 and AR-18. It is ovate in cross-section, uniserial, rectilinear and has an elongate proloculus which is bigger than the following chambers.

cf. *Lingulina* sp. Pl. 2, Fig. 17

Remarks: Some specimens from samples AR-17 and AR-18 can be attributed with uncertainty to the genus *Lingulina*.

Ellipsoglandulina sp. Pl. 2, Fig. 23

Remarks: Concerning the morphology and the very minute initial growth stage two specimens (AR-4, AR-17) are very similar to *Ellipsogladulina*. However, they differ from this genus in having compressed chambers rather than inflated ones.

cf. Pseudogaudrynella sp. Pl. 2, Fig. 22

Remarks: Only one specimen from sample AR-5 was found. It is characterized by having a semitriangular initial part, followed directly by 5-6 alternating biserially arranged inflated chambers.

REFERENCES

- ABD-ELSHAFY, E. & IBRAHIM, N. (1990): New Jurassic Foraminifera from Egypt. - Acta Palaeont. Polonica, 35 (1-2): 15-29, 3 figs., pls. 1-4; Warszawa. [1]
- ABED, A. (1987): New occurrence of the Jurassic in Baqa depression. -Dirasat, 14 (1): 265-274, 9 figs.; Amman.
- AMEREH, B. (1987): Sedimentological and Petrological Interplays of the Nubian Series in Jordan with Regard to Paleogeography and Diagenesis. - Braunschw. geol.-paläont. Diss., 7: 232 pp., 33 figs., 6 tabs; Braunschweig.
- AQRABAWI, M. (1987): Biostratigraphy of the Jurassic rocks in Jordan "Macrofauna". - M. Sc. Thesis Jordan Univ.: 137 pp., 10 pls.; Amman.
- AVNIMELECH, M. (1945): New Jurassic outcrop in the Jordan Valley. -Geol. Mag., 82: 81-83; London.
- BARNARD, T., CORDEY, W. G. & SHIPP, D. J. (1981): Foraminifera from the Oxford Clay (Callovian - Oxfordian) of England. - Rev. Esp. Micropaleont., 13 (3): 383-462, 4 figs., 4 pls.; Madrid. [6]
- BASHA, S. (1980): Ostracoda from the Jurassic System of Jordan. Rev. Esp. Micropaleont., **12** (2): 231-254; 3 figs., 4 pls., 4 tabs.; Madrid.
- BENDER, F. (1968): Geologie von Jordanien. 230 pp., 168 ligs., 1 geol. map, 21 pls.; Berlin (Bornträger).
- BIELECKA, W. & GEROCH, S. (1977): Quelques Foraminifères du Jurassique supérieur des Carpathes externes Polonaises. - Acta 6th Coll. Afric. Micropaleont, Tunis 1977. - Annal. Min. Geol. Tunis, 28: 185-199, 2 figs., 2 pls., 2 tabs.; Tunis.
- BLAKF, G. S. (1936): The stratigraphy of Palestine and its building stones. - Printing and Stationary Office Report, 133 pp.; Jerusalem.
- BLAKE, G. S. & IONIDES, M. G. (1939): Report on the water resources of Transjordan and their development. Incorporating report in geology, soils and minerals, and hydrogeol. correlations; London (Crown Agents for the Colonies).
- BOOM, G. VAN DEN, & LAHLOUB, M. (1962): The Iron-Ore Deposit "Warda" in the southern Ajlun District. - Unpubl. Rep. Fed. Inst. Geosci. and Natur. Resources; Hannover.
- COOPER, G. A. (1989): Jurassic Brachiopods of Saudia Arabia. Smith. Contr. Paleobiol., **65**: 213 pp., 48 figs., 37 pls.; Washington.
- Cox, L. R. (1925): Bajocian-Bathonian outcrop in the Jordan Valley and its Molluscan remains. - Ann. Mag. Nat. Hist., 9 (15): 169-181; London.
- COPESTAKE, P. & JOHNSON B. (1989): The Hettangian to Toarcian (Lower Jurassic). - In: JENNINS, D. G. & MURRAY, J. W. (eds.): Stratigraphical atlas of fossil foraminifera, 2nd edit.: 129-188, 10 figs., 6 pls.; Chichester (Ellis Horwood).

- ELLIS, B. F., MESSINA, A. R., CHARMATZ, R. & RONAI, L. E. (1969): Catalogue of Index smaller Foraminifera, Vol. 3, Mesozoic -Tertiary benthonic Foraminifera. - Spec. Publ. Amer. Mus. Nat. Hist; New York.
- GEROCH, S. & KOSZARSKI, L. (1988): Agglutinated foraminiferal stratigraphy of the Silesian Flysch Trough. - 2nd Workshop on agglutinated Foraminifera, Vienna 1986, Abh. Geol. B.-A., 41: 73-79, 3 figs.; Wien.
- GOLDBERG, M. & FRIEDMAN, G. M. (1974): Paleoenvironments and paleogeographic evolution of the Jurassic system in southern Israel, - Geol. Surv. Israel, Bull., 61: 1-44, 16 figs., 8 pls.; Jerusalem.
- HEGAB, A. A. & TKHORZHEVSKY, E. S. (1992): Terebratulida (Brachiopoda) from the Upper Jurassic of Anti-Lebanon, Syria. -Bull. Fac. Sci., Assiut Univ. Egypt, 21 (1F): 1-30, 7 figs., 1 pl.; Assiut.
- HIRSCH, F. & PICARD, L. (1988): The Jurassic facies in the Levant. -J. Petrol. Geol., 11 (3): 277-308, 15 figs.; Beaconsfield.
- HOFKER, J. (1957): Foraminiferen der Oberkreide von Nordwest-Deutschland und Holland. - Beih. Geol. Jb., **27**: 464 pp., 495 figs.; Hannover.
- JENKINS, D. G. & MURRAY, J. W. (eds.) (1989): Stratigraphical Atlas of Fossil Foraminifera. - 2nd edit.: 592 pp., New York, Chichester (Ellis Horwood).
- KUSS, J. (1990): Middle Jurassic calcareous algae from the Circum-Arabian area. - Facies, 22: 59-86, 5 figs., 1 tab., 21 pls.; Erlangen.
- LIBBEY, W. & HOSKINS, F. (1905): Jordan Valley and Petra. Bull. Amer. Geol. Soc., 38: 96-97; New York.
- LOEBLICH, A. & TAPPAN, H. (1988): Foraminiferal genera and their classification. - 970 pp.; 847 pls.; New York (van Nostrand Reinhold).
- LUTZE, G. F. (1960): Zur Stratigraphie und Paläontologie des Callovian und Oxfordian in Nordwest-Deutschland. - Geol. Jb., 77: 391-532, 20 figs., 21 pls.; Hannover. [26]
- MORRIS, P. H. & COLEMAN, B. E. (1989): The Aalenian to Callovian (Middle Jurassic). - In: JENNINS, D. G. & MURRAY, J. W. (eds.), Stratigraphical atlas of fossil foraminifera, 2nd edit.: 189-236, 6 figs, 12 pls.; Chichester (Ellis Horwood).
- MUIR-WOOD, H. M. (1925): Jurassic Brachiopods from the Jordan Valley. – Ann. Mag. Nat. Hist., 9 (15): 181-192; London.
- NAGY, J., LOFALDLI, M. & BACKSTROM, S. A. (1988): Aspects of Foraminiferal distribution and depositional conditions in Middle Jurassic to Early Cretaceous shales in Eastern Spitzbergen. - 2nd Workshop on agglutinated Foraminifera, Vienna 1986, Abh. Geol. B.-A., 41: 287-300; 8 figs; Wien.

- NAGY, J., PILSKOG, B. & WILHELMSEN, R. M. (1990): Facies controlled distribution of Foraminifera in the Jurassic North Sea Basin. - In: HEMLEBEN, C., KAMINSKI, M. A., KUHNT, W. & SCOTT, D. B. (eds.), Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera, NATO ASI Series, Ser. C, 237: 621-657, 22 figs.; Dordrecht (Kluwer).
- NAGY, J., LOFALDLI, M., BACKSTROM, S. A. & JOHANSEN, H. (1990): Agglutinated foraminiferal stratigraphy of Middle Jurassic to basal Cretaceous shales, Central Spitzbergen. - In: HEMLEBEN, C., KAMINSKI, M. A., KUHNT, W. & SCOTT, D. B. (eds.), Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera, NATO ASI Series, Ser. C, 237: 969-1015, 12 figs., 6 pls.; Dordrecht (Kluwer).
- OKIA, S. M. (1986): Litho- and microfacies of Upper Jurassic carbonate rocks outcropping in Central Saudi Arabia. - J. Petrol. Geol, 9 (2): 195-206, 7 figs, 3 pls.; Beaconsfield.
- RISCH, H. (1969): Stratigraphie der höheren Unterkreide der bayerischen Kalkalpen, mit Hilfe von Mikrofossilien. - Diss. Ludwig-Maximilians-Univ. München, 180 pp., 18 pls.; München.

- ROGL, K. D. (1988): Early Cretaceous agglutinated Foraminifera from limestone-marl rhythmites of the Gresten Klippen Belt, Eastern Alps (Austria). - 2nd Workshop on agglutinated Foraminifera, Vienna 1986, Abh. Geol. B.-A., 41: 41-59, 10 figs., 3 pls.; Wien.
- SAID, R. & BARAKAT, M. G. (1958): Jurassic microfossils from Gebel Maghara, Sinai, Egypt. - Micropaleontology, 4 (3): 231-272, 5 figs., 1 tab., 6 pls.; New York. [35]
- SHAHIN, A. & EL-BEIALY, S. (1989): Microfossils from the Middle Jurassic Shusha Formation of the Gabal al Maghara, Sinai, Egypt. - N. Jb. Geol. Paläont. Mh., 1989 (9): 560-575, 6 figs.; Stuttgart.
- SHIPP, D. J. (1989): The Oxfordian to Portlandian. In: JENKINS, D. G. & MURRAY, J. W. (eds.), Stratigraphical atlas of fossil foraminifera. - 2nd edit: 237-272, 6 figs., 3 pls.; Chichester (Ellis Horwood), [37]
- SOUAYA, F. J. (1976): Foraminifera of Sun-Gulf Global Linckens Island Well P-46, Arctic Archipelago, Canada. - Micropaleontology, 22 (3): 249-306, 6 figs., 12 pls.; New York. [38]
- WETZEL, R. & MORTON, D. M. (1959): Contributions à la géologie de la Transthe jordan. - Notes et Memoires sur le Moyen-Orient, 7: 95-188; Paris.

Numbers in brackets behind some references refer to numbers given in table 2.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Zitteliana - Abhandlungen der Bayerischen Staatssammlung für Paläontologie und Histor. Geologie

Jahr/Year: 1993

Band/Volume: 20

Autor(en)/Author(s): Al-Harithi Taleb

Artikel/Article: Foraminifera from the Jurassic (Callovian - Kimmeridgian) outcrop in Arda Area, Central Jordan 145-154