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Abstract

The giant deep-sea oyster Neopycnodonte zibrowii Gofas, C. Salas & Taviani, 2009 is a keystone deep-sea habitat builder species. 
Discovered about fifteen years ago in the Azores, it has been described and assigned to the genus Neopycnodonte Fischer von 
Waldheim, 1835 based on morphological features. In this study, we generated DNA sequence data for both mitochondrial (COI 
and 16S) and nuclear (ITS2 and 28S) markers based on the holotype specimen of N. zibrowii to establish a molecular phylogenetic 
framework for the systematic assessment of this species and to provide a reliable (i.e., holotype-based) reference sequence set for 
multilocus DNA barcoding approaches. Molecular data provide compelling evidence that the giant deep-sea oyster is a distinct spe-
cies, rather than a deep-water ecophenotype of Neopycnodonte cochlear (Poli, 1795), with extremely high genetic divergence from 
any other gryphaeid. Multilocus phylogenetic analyses place the giant deep-sea oyster within the clade “Neopycnodonte/Pycnodon-
te” with closer affinity to N. cochlear rather than to P. taniguchii Hayami & Kase, 1992, thus supporting its assignment to the genus 
Neopycnodonte. Relationships within this clade are not well supported because mitochondrial variation is inflated by saturation that 
eroded phylogenetic signal, implying an old split between taxa within this clade. Finally, the set of reference barcode sequences 
of N. zibrowii generated in this study will be useful for a wide plethora of barcoding applications in deep-sea biodiversity surveys. 
Molecular validation of recent records of deep-sea oysters from the Atlantic Ocean and the Mediterranean Sea will be crucial to 
clarify the distribution of N. zibrowii and assess the phenotypic variation and ecology of this enigmatic species.
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Introduction

Deep-sea is the Earth’s largest biome but it is still one 
of the most underexplored regions (Ramirez-Llodra 
et al. 2010). Deep-sea biodiversity is mostly unknown 
due to the extreme environmental conditions that limits 
sampling capabilities (Rogers et al. 2015; Sinniger et al. 
2016; Woodall et al. 2018). Along with advances in ex-
ploration technologies (Feng et al. 2022), new molecular 
technologies such as high-throughput sequencing and the 
molecular identification of multiple species in environ-
mental DNA (eDNA metabarcoding; Taberlet et al. 2012) 
have boosted deep-sea biodiversity assessments (Guardi-

ola et al. 2016; Everett and Park 2018). However, the low 
number of reference sequences taxonomically validated 
in online repository databases (e.g. GenBank) limits the 
identifications of MOTUs (Molecular Operational Tax-
onomic Unit), thus reducing the taxonomic resolution 
of eDNA studies (Ruppert et al. 2019). Studies using an 
integrative taxonomic approach − combining molecular, 
morphological and environmental data − on new deep-
sea taxa have been carried out in several groups of or-
ganisms, such as Anthozoa (López-González et al. 2022), 
Mollusca (Xu et al. 2019), and some others (Silva et al. 
2016; Błażewicz et al. 2019). However, while molecular 
data are still not available for a great portion of known 
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deep-sea biodiversity, deep-sea exploration has contin-
ued, contributing to the discovery of new benthic eco-
systems and associated communities. Therefore, there is 
a great need to constantly improve with reliable reference 
sequences the taxonomic coverage of deep-sea taxa in re-
pository databases.

In this study, we focused on a keystone deep-sea hab-
itat builder species discovered about fifteen years ago 
in the Azores Archipelago: the giant deep-sea oyster 
Neopycnodonte zibrowii Gofas, C. Salas & Taviani, 2009 
(Gryphaeidae Vialov, 1936) (Wisshak et al. 2009b). This 
reef-forming oyster was first observed during a submers-
ible dive along the Faial Channel (480–500 meter depth) 
(Wisshak et al. 2009b). Deep-sea reefs of N. zibrowii are 
built by both stacked living and dead specimens on ver-
tical rocky substrate of seamounts, escarpments and in 
canyons (Beuck et al. 2016), and host peculiar deep-sea 
communities. Benthic associations between N. zibrowii 
and the cyrtocrinid Cyathidium foresti Cherbonnier 
& Guille, 1972 have been documented in the Atlantic 
Ocean (Wisshak et al. 2009a), and between N. zibrowii 
and cold-water corals in both the Atlantic Ocean (Van 
Rooij et al. 2010) and the Mediterranean Sea (Taviani et 
al. 2017, 2019). Recently, new records and observations 
on N. zibrowii in the Atlantic Ocean allowed updating 
its ecology and distribution (Beuck et al. 2016). The gi-
ant deep-sea oyster has been meticulously described in 
terms of external morphology, microstructures of shell 
and anatomy (Wisshak et al. 2009b). The systematic 
placement of this species in the genus Neopycnodonte 
was based on morphological characteristics such as the 
circular muscle scar, the enlarged vermiculate chomata 
(see ‘neopycnodontine chomata’ in Harry 1985) and the 
vesicular structures in the inner shell layer. Neopycno-
donte zibrowii is morphologically different from the only 
extant congeneric species Neopycnodonte cochlear (Poli, 
1795) in several characters such as the shell architecture 
and outline, the absence of the resilifer bulge in the lat-
ter species and the shape and thickness of the vesicular 
microstructures. On the other hand, 15 years on from its 
discovery, molecular data are still not available for this 
species, thus limiting the assessment of its phylogenetic 
position and systematic placement.

The taxonomic assessment of oysters based on mor-
phology can be challenging due to a high shell variability 
and a low number of diagnostic characters (Lam and Mor-
ton 2006; Raith et al. 2015; Salvi et al. 2021). Molecular 
data have a key role in species delimitation and taxonom-
ic identification of oyster species (Lam and Morton 2003; 
Bieler et al. 2004; Kirkendale et al. 2004; Al-Kandari et 
al. 2021; Salvi et al. 2022) and would provide compelling 
evidence that the giant deep-sea oyster N. zibrowii is a 
distinct species rather than a deep-water ecophenotype of 
N. cochlear (Wisshak et al. 2009b).

In this study, we generated DNA sequence data of the 
giant deep-sea oyster N. zibrowii for both mitochondrial 
and nuclear markers based on the holotype and performed 

a multilocus phylogenetic analyses to establish its rela-
tionships with other gryphaeids. The main aims of this 
study are to provide: (i) a molecular phylogenetic frame-
work for the systematic assessment of the giant deep-sea 
oyster, and (ii) a reliable (i.e., holotype-based) reference 
sequence set for multilocus DNA barcoding approaches.

Materials and methods
Specimens and sequence data gathering

We gathered tissue samples for molecular analyses from 
museum collections and by field collection. The holotype 
of N. zibrowii (MNHN-IM-2000-20888) and the speci-
men of Hyotissa numisma (Lamarck, 1819) (MNHN-
IM-2013-13700) are deposited at the National Museum 
of Natural History (MNHN) of Paris, while the specimen 
of Pycnodonte taniguchii Hayami & Kase, 1992 (UF 
280382) is preserved in the collection of Florida Muse-
um of Natural History (FLMNH). Neopycnodonte co-
chlear (OS239) was collected during scuba diving off the 
coast of Civitavecchia (nearby Rome, Italy) and stored 
in pure ethanol. Total genomic DNA was extracted from 
adductor muscles following standard high-salt protocols 
(Sambrook et al. 1989). We amplified two mitochondri-
al − cytochrome oxidase subunit I (COI) and 16S rRNA 
(16S) − and two nuclear − 28S rRNA (28S) and ITS2 
rRNA (ITS2) − gene fragments by polymerase chain re-
action (PCR). Primers and conditions used for the am-
plification are reported in Table 2. Sequencing of PCR 
products was carried out by the company Genewiz® 
(https://www.genewiz.com), using the same primers em-
ployed for amplification. Sequences generated from these 
specimens were complemented with sequences obtained 
from GenBank for additional gryphaeid species. Locali-
ties and GenBank accession numbers of sequences used 
for molecular analyses are shown in Table 1. GenBank 
sequences were selected in order to minimise the use of 
chimeric sequences in concatenated alignments (i.e., se-
quences of different gene fragments obtained from differ-
ent voucher specimens), therefore whenever possible for 
each species we selected mitochondrial (COI and 16S) 
and nuclear (28S and ITS2) sequences from the same 
voucher. Three specimens (Hyotissa hyotis #2, Hyotissa 
imbricata and N. cochlear #1) have GenBank sequences 
from different vouchers (chimeric concatenated sequenc-
es). We validated the taxonomic identification of each 
of these vouchers based on single-gene NJ trees. First, 
we built four single-gene datasets (COI, 16S, 28S and 
ITS2) including all the sequences of Gryphaeidae species 
in GenBank and our sequences. Then for each marker 
we selected GenBank sequences that clustered within 
the same clade of conspecific vouchers we sequenced 
(H. hyotis #1 and N. cochlear #1) or that have a congru-
ent phylogenetic placement among the four single-gene 
datasets (H. imbricata) (results not shown).

https://www.genewiz.com
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Phylogenetic analyses

Newly generated sequences for each marker were used 
as query in BLAST searches (blastn algorithm) using 
default settings to evaluate contaminants and to con-
firm the identification of the specimens from family to 
species level. Multiple sequence alignments of each 
marker were performed with MAFFT v.7 (Katoh et al. 
2019) using the G-INS-I iterative refinement algorithm 
for the COI and the E-INS-i iterative refinement al-
gorithm for the rRNA markers. GBlocks (Castresana 
2000) was used to remove poorly aligned and ambigu-
ous position of the hypervariable regions of the rRNA 
alignments using a relaxed selection of blocks (Tala-
vera and Castresana 2007). Single-gene alignments 
were concatenated using the software SequenceMatrix 
(Vaidya et al. 2011).

Phylogenetic relationships were inferred using Max-
imum Likelihood (ML) and Bayesian Inference (BI) 
methods. We used the oyster Magallana gigas (Thun-
berg, 1793) as outgroup based on previous phyloge-
netic studies (Tëmkin 2010; Plazzi et al. 2011). ML 
analyses were performed in the W-IQ-TREE web serv-
er v.1.6.12 [http://iqtree.cibiv.univie.ac.at/; (Trifino-
poulos et al. 2016)] based on a partitioned substitution 

model. For each gene partition, the best substitution 
model was calculated by the ModelFinder module 
(Kalyaanamoorthy et al. 2017) using an edge-linked 
model and the BIC criterion (COI: TPM2u+F+G4; 
16S: HKY+F+G4; 28S: TN+F+G4; ITS2: K2P+G4). 
ML analysis was performed with 1,000 pseudo-rep-
licates of ultrafast bootstrapping [uBS; (Minh et al. 
2013)]. Bayesian analyses (BA) were carried out with 
MrBayes v.3.2.7 (Ronquist et al. 2012), using the sub-
stitution models selected by ModelFinder for each gene 
partition. We ran two Markov chains of two million 
generations each, with a sample frequency of 200 gen-
erations. Convergence of the runs (ESS values > 200) 
were checked with Tracer 1.7 (Rambaut et al. 2018) 
after a burn-in of 25%. Nodal support was estimated as 
Bayesian posterior probability (BPP). FigTree v.1.4.4 
(http://tree.bio.ed.ac.uk/software/figtree/) was used to 
visualize both ML and BI trees.

Genetic divergence between species at each marker 
(COI, 16S, 28S and ITS2) were calculated using both 
uncorrected genetic distance (p-distance) and genetic 
distance corrected under the Kimura 2-paramer model 
(K2P-distance) using the software Mega11 and the op-
tion “Compute Between Groups Mean Distance” (Tamura 
et al. 2021).

Table 1. Details on the species and DNA sequence data used in this study. Asterisks indicate specimens sequenced in this study. Gen-
Bank data are as follows: 1: Matsumoto 2003; 2: Matsumoto and Hashimoto unpublished; 3: Kirkendale et al. 2004; 4: Plazzi and Pas-
samonti 2010; 5: Kim et al. 2009; 6: Plazzi et al. 2011; 7: Li et al. unpublished; 8: Ren et al. 2016; 9: Salvi et al. 2014; 10: Ip et al. 2022.

Specimen Locality Genbank accession number
COI 16S 28S ITS2

Hyotissa hyotis #1 Madagascar GQ1665836 GQ1665646 – –
Hyotissa hyotis #2 Singapore (COI); Maldives (16S and ITS2) OM94645010 LM9938868 – LM9938769

Hyotissa imbricata Japan: Okinawa (COI and ITS2); 
China: Beibu Bay (16S and 28S)

AB0769171 KC8471367 KC8471577 AB1027582

Hyotissa numisma #1 Guam – AY3765984 AF1370353 –
Hyotissa numisma #2 * Papua New Guinea: Rempi Area – PP070396 PP070400 –
Neopycnodonte cochlear #1 Italy: Mediterranean Sea (COI, 16S and ITS2) JF4967726 JF4967586 – LM9938789

Neopycnodonte cochlear #2 * Italy: Civitavecchia PP069758 PP070397 PP070401 PP074322
Neopycnodonte zibrowii * Azores: Faial Channel PP069759 PP070398 PP070402 PP074323
Pycnodonte taniguchii #1 Japan: Okinawa AB0769161 – AB1027592 –
Pycnodonte taniguchii #2 * Indonesia: Sulawesi Island PP069760 PP070399 PP070403 PP082050
Magallana gigas (outgroup) Japan (COI, 16S and 28S); South Korea (ITS2) KJ8552418 KJ8552418 AB1027572 EU0724585

Table 2. Primers used in this study: forward primers are listed above and reverse primers below. For the COI and ITS2 gene frag-
ments we designed new primers specific to Ostreoidea Rafinesque, 1815, and we used the following PCR cycling conditions: dena-
turation step: 94 °C / 3 min; 35 cycles of: 94 °C / 60 s, T° annealing (COI: 49 °C; ITS2: 50 °C) / 60 s, 72 °C / 60 s; final extension: 
10 min at 72 °C.

Gene Primer Sequence Reference Notes
COI Moll-F 5’ – ATAATYGGNGGNTTTGGNAAYTG – 3’ This study Dr Zuccon D. (MNHN), pers. comm.

osHCO998-R 5’ – ACRGTIGCIGCICTRAARTAAGCICG – 3’ Salvi et al., in prep
16S 16Sar-L 5’ – CGCCTGTTTATCAAAAACAT – 3’ Salvi et al. (2010)

16Sbr-H 5’ – CCGGTCTGAACTCAGATCAC – 3’
28S D1F-OS 5’ – GAGACTACGCCCTGAACTTAAGCAT – 3’ This study

D6R-OS 5’ – GCTATCCTGAGGGAAACYTCAGAGG – 3’ Salvi et al. (2022)
ITS2 its3d-OS 5’ – GGGTCGATGAAGARCGCAGC – 3’ This study Modified from Oliverio and Mariottini (2001)

its4r-OS 5’ – CCTAGTTAGTTTCTTTTCCTGC – 3’

http://iqtree.cibiv.univie.ac.at/
http://tree.bio.ed.ac.uk/software/figtree/
http://www.ncbi.nlm.nih.gov/nuccore/GQ1665836
http://www.ncbi.nlm.nih.gov/nuccore/GQ1665646
http://www.ncbi.nlm.nih.gov/nuccore/OM94645010
http://www.ncbi.nlm.nih.gov/nuccore/LM9938868
http://www.ncbi.nlm.nih.gov/nuccore/LM9938769
http://www.ncbi.nlm.nih.gov/nuccore/AB0769171
http://www.ncbi.nlm.nih.gov/nuccore/KC8471367
http://www.ncbi.nlm.nih.gov/nuccore/KC8471577
http://www.ncbi.nlm.nih.gov/nuccore/AB1027582
http://www.ncbi.nlm.nih.gov/nuccore/AY3765984
http://www.ncbi.nlm.nih.gov/nuccore/AF1370353
http://www.ncbi.nlm.nih.gov/nuccore/PP070396
http://www.ncbi.nlm.nih.gov/nuccore/PP070400
http://www.ncbi.nlm.nih.gov/nuccore/JF4967726
http://www.ncbi.nlm.nih.gov/nuccore/JF4967586
http://www.ncbi.nlm.nih.gov/nuccore/LM9938789
http://www.ncbi.nlm.nih.gov/nuccore/PP069758
http://www.ncbi.nlm.nih.gov/nuccore/PP070397
http://www.ncbi.nlm.nih.gov/nuccore/PP070401
http://www.ncbi.nlm.nih.gov/nuccore/PP074322
http://www.ncbi.nlm.nih.gov/nuccore/PP069759
http://www.ncbi.nlm.nih.gov/nuccore/PP070398
http://www.ncbi.nlm.nih.gov/nuccore/PP070402
http://www.ncbi.nlm.nih.gov/nuccore/PP074323
http://www.ncbi.nlm.nih.gov/nuccore/AB0769161
http://www.ncbi.nlm.nih.gov/nuccore/AB1027592
http://www.ncbi.nlm.nih.gov/nuccore/PP069760
http://www.ncbi.nlm.nih.gov/nuccore/PP070399
http://www.ncbi.nlm.nih.gov/nuccore/PP070403
http://www.ncbi.nlm.nih.gov/nuccore/PP082050
http://www.ncbi.nlm.nih.gov/nuccore/KJ8552418
http://www.ncbi.nlm.nih.gov/nuccore/KJ8552418
http://www.ncbi.nlm.nih.gov/nuccore/AB1027572
http://www.ncbi.nlm.nih.gov/nuccore/EU0724585
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Results
BLAST searches using mitochondrial sequences (COI 
and 16S) of the newly sequenced specimens of H. nu-
misma, N. cochlear and P. taniguchii confirmed the taxo-
nomic identifications of these species (sequence identity 
of 99–100%). BLAST searches using the mitochondrial 
sequences generated from the holotype of N. zibrowii re-
covered as best hits sequences belonging to Gryphaeidae 
species (COI: sequence identity of 73.2%/72.5%/73.1% 
with GenBank sequences of Hyotissa sp./Neopycnodonte 
sp./Pycnodonte sp. respectively; 16S: sequence identity 
of 87.3%/87.5% with GenBank sequences of Hyotissa 
sp./Neopycnodonte sp. respectively). This confirms the 
lack of contamination during the amplification and the 
affiliation of this species to Gryphaeidae.

The concatenated dataset included 2409 positions 
(COI: 455, 16S: 449, 28S: 1078, ITS2: 427 positions) and 
among the 828 variable positions 436 were phylogeneti-
cally informative (i.e., parsimony informative). Maximum 
likelihood and Bayesian trees show two main clades: one 
including Hyotissa species (uBS = 95; BPP = 1), and 
the other one including Pycnodonte and Neopycnodonte 
species (uBS = 83; BPP = 0.94) (Fig. 1). Neopycnodon-
te zibrowii is nested within the second clade with a sister 
relationship with N. cochlear (uBS = 56; BPP = 0.72), 
whereas P. taniguchii is sister to Neopycnodonte species.

The COI genetic distances (K2P/p-distance) between 
N. zibrowii and N. cochlear and between N. zibrowii 
and P. taniguchii are respectively 35.8%/28.2% and 
35%/27.6% (Table 3). The 16S genetic distances (K2P/p-
distance) between N. zibrowii and either N. cochlear or 
P. taniguchii are 13.5%/12.1% (Table 3). The mean in-
terspecific genetic distances (K2P/p-distance) among the 
six gryphaeid species are 33.7% ± 4.6% / 26.8% ± 3% 
at the COI and 15.5% ± 4.6%/13.7% ± 3.7% at the 16S. 
The 28S genetic distances (K2P/p-distance) between 
N. zibrowii and N. cochlear and between N. zibrowii and 
P. taniguchii are respectively 2.5%/2.4% and 9%/8.4% 
(Table 4). The ITS2 genetic distances (K2P/p-distance) 
between N. zibrowii and N. cochlear and between N. zi-
browii and P. taniguchii are respectively 15.8%/14.9% 
and 38.2%/29.6% (Table 4). The mean interspecific ge-
netic distances (K2P/p-distance) among the six gryphaeid 
species are 5.5% ± 2.5% / 5.1% ± 2.2% at the 28S and 
27.4% ± 16.8% / 22.0% ± 11.9% at the ITS2.

Discussion

Benthic organisms such as oysters, with extensive pheno-
typic variation and few diagnostic characters, are prone to 
misidentification in morphological assessments. The util-
ity of molecular characters for taxonomic identification 

Figure 1. Bayesian phylogenetic tree of six Gryphaeidae species based on COI, 16S, 28S and ITS2 markers. Nodal supports indicate 
the values of uBS (upper) and the BPP (lower). The tree is rooted with Magallana gigas which belongs to the sister family Ostreidae 
Rafinesque, 1815. Specimens sequenced in this study are highlighted in bold.

Magallana gigas [Ostreidae]

Hyotissa hyotis #2

Hyotissa numisma #1

Hyotissa imbricata
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[HOLOTYPE MNHN-IM-2000-20888]

Neopycnodonte cochlear #2

Neopycnodonte cochlear #1
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Pycnodonte taniguchii #2
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and systematic assessment of these organisms cannot be 
overstated and has been proven over and over by studies 
on true oysters (Lam and Morton 2006; Raith et al. 2015; 
Salvi et al. 2021), pearl oysters (Cunha et al. 2011), tree 
oysters (Garzia et al. 2022) as well as gryphaeid oysters 
(Li et al. 2023). Conchological convergence, phenotypic 
plasticity, and the occurrence of cryptic species make mo-
lecular taxonomic validation of new oyster species nec-
essary to accurately estimate the diversity of these taxa.

Our molecular phylogenetic results clearly demon-
strate that N. zibrowii is a distinct species with extreme-
ly high genetic divergence from any other gryphaeid at 
all the markers analysed (Tables 3, 4). Neopycnodonte 
zibrowii is nested within the clade “Neopycnodonte/
Pycnodonte” with closer affinity to N. cochlear rather 
than P. taniguchii (Fig. 1), and thus supporting its as-
signment to the genus Neopycnodonte Fischer von Wald-
heim, 1835 based on morphological features (Wisshak et 
al. 2009b). Phylogenetic relationships within this clade 
are not well-supported, like in a previous phylogenetic 

study including N. cochlear and P. taniguchii and based 
on COI and 28S markers (Li et al. 2021). However, the 
extended dataset of our study improved nodal support 
and allowed us to clarify the source of phylogenetic 
uncertainty. Indeed, at both mitochondrial markers, val-
ues of pairwise genetic distance between N. cochlear / 
N. zibrowii / P. taniguchii are similar and remarkably high 
(COI: 35.0–35.8%; 16S: 11.2–13.5%); whereas at nucle-
ar markers the genetic distance between P. taniguchii and 
N. zibrowii is two-three times higher than between the 
latter and N. cochlear (Table 4). Such a pattern suggests 
that mitochondrial variation is inflated by saturation that 
eroded phylogenetic signal, implying an old split between 
taxa within this clade. Wisshak et al. (2009b) highlighted 
a low number of morphological and ecological differenc-
es between the genus Neopycnodonte and Pycnodonte 
Fischer von Waldheim, 1835 and pointed out the need for 
a systematic revision of the genera. Our results highlight 
that nuclear data will have a key role in further systematic 
assessment of these genera.

Table 3. Mean genetic distance based on COI (lower triangular matrix) and 16S (upper triangular matrix) DNA sequences, calculat-
ed using the K2P model (first value) and uncorrected (p-distance: value inside brackets). The COI and 16S dataset are composed by 
2 sequences for each species, except for N. zibrowii (one sequence for each marker), H. imbricata (one COI and one 16S sequence) 
and P. taniguchii (one 16S sequence), see Table 1; n. a.: not available.

Neopycnodonte 
zibrowii

Neopycnodonte 
cochlear

Pycnodonte 
taniguchii

Hyotissa hyotis Hyotissa 
numisma

Hyotissa 
imbricata

Neopycnodonte zibrowii – 13.5% 13.5% 15.1% 23.5% 14.9%
(12.1%) (12.1%) (13.4%) (19.9%)  (13.3%)

Neopycnodonte cochlear 35.8% – 11.2% 15.5% 22.9% 14.9%
(28.2%) (10.3%) (13.8%) (19.5%) (13.4%)

Pycnodonte taniguchii 35.0% 35.4% -– 14.9% 22.3% 14.2%
(27.6%) (28.1%) (13.3%) (19.0%) (12.7%)

Hyotissa hyotis 33.3% 39.6% 32.7% – 15.6% 5.3%
(26.7%) (30.5%) (26.5%) (13.9%) (5.1%)

Hyotissa numisma n. a. n. a. n. a. n. a. – 15.1%
(13.6%)

Hyotissa imbricata 34.0% 37.0% 31.8% 22.4% n. a. –
(27.2%) (28.8%) (25.8%) (19.1%)

Table 4. Mean genetic distance based on 28S (lower triangular matrix) and ITS2 (upper triangular matrix) DNA sequences, calcu-
lated using the K2P model (first value) and uncorrected (p-distance: value inside brackets). The 28S and ITS2 dataset are composed 
by 2 sequences for each species, except for N. zibrowii (one sequence for each marker), H. hyotis (one ITS2 sequence and no 28S 
sequence), N. cochlear (one 28S sequence) and P. taniguchii (one ITS2 sequence), see Table 1. The ITS2 sequence of H. imbricata 
was not used for genetic distance calculation because it was too short; n. a.: not available.

Neopycnodonte 
zibrowii

Neopycnodonte 
cochlear

Pycnodonte 
taniguchii

Hyotissa hyotis Hyotissa 
numisma

Hyotissa 
imbricata

Neopycnodonte zibrowii – 15.8% 38.2% 23.8% n. a. n. a.
(14.9%) (29.6%) (20.4%)

Neopycnodonte cochlear 2.5% – 43.5% 20.9% n. a. n. a.
(2.4%) (33.0%) (19.4%)

Pycnodonte taniguchii 9.0% 4.4% – 48.4% n. a. n. a.
(8.4%) (4.2%) (35.4%)

Hyotissa hyotis n. a. n. a. n. a. – n. a. n. a.
Hyotissa numisma 6.8% 4.4% 7.3% n. a. – n. a.

(6.5%) (4.2%) (6.9%)
Hyotissa imbricata 6.8% 4.6% 7.7% n. a. 1.2% –

(6.5%) (4.4%) (6.3%) (1.2%)
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The availability of taxonomically validated reference 
sequence is a premise for DNA barcoding and metabar-
coding approaches for large-scale, fast, and cost-effective 
molecular taxonomic identification (Hebert et al. 2003; 
Moritz and Cicero 2004; Schindel and Miller 2005; Salvi 
et al. 2020). The mitochondrial COI and 16S are the most 
common markers in DNA barcoding studies on Ostreidae 
and Gryphaeidae (Lam and Morton 2003, 2004, 2006; 
Kirkendale et al. 2004; Liu et al. 2011; Hsiao et al. 2016; 
Salvi et al. 2021). However, also nuclear rRNA mark-
ers such as 28S (Mazón-Suástegui et al. 2016) and ITS2 
(Salvi et al. 2014; Salvi and Mariottini 2017) have proven 
useful for molecular taxonomic identification of oysters. 
Moreover, rRNA markers are frequently selected as tar-
get genes in eDNA metabarcoding projects (Ruppert et 
al. 2019). In this respect, the set of four reference (holo-
type-based) barcode sequences of N. zibrowii provided in 
this study will be useful for a wide plethora of barcoding 
applications in deep-sea biodiversity surveys. During the 
last decade, deep-sea oysters from a mounting number of 
regions across the Atlantic Ocean and the Mediterranean 
Sea have been morphologically identified as N. zibrowii: 
from Bay of Biscay (Van Rooij et al. 2010), Gulf of Ca-
diz (Gofas et al. 2010), Celtic Sea (Johnson et al. 2013), 
Angola and Mauritania (Beuck et al. 2016), southern Sar-
dinia (Taviani et al. 2017), Sicilian Channel (Rueda et al. 
2019) and Gulf of Naples (Taviani et al. 2019). Molec-
ular validation of these records will be crucial to clarify 
the distribution of N. zibrowii and assess the phenotypic 
variation and ecology of this enigmatic species. Finally, 
given the high prevalence of cryptic species in oysters, it 
is not unlikely that future molecular assessments of deep-
sea oysters will disclose new species.
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