# <u> PENSOFT</u>,



# Taxonomic re-appraisal of *Scolopocryptops quadristriatus* (Verhoeff, 1934) and a description of a new species from Japan and Taiwan (Chilopoda, Scolopendromorpha, Scolopocryptopidae)

Taro Jonishi<sup>1</sup>, Takafumi Nakano<sup>1</sup>

1 Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

https://zoobank.org/6B07BF7A-9ADA-4959-A654-59E747E200DE

Corresponding author: Taro Jonishi (ykn347635@gmail.com)

Academic editor: Martin Husemann • Received 23 January 2024 • Accepted 14 March 2024 • Published 9 April 2024

# Abstract

Centipedes of the genus *Scolopocryptops* Newport, 1844 are blind species mostly described from the New World and East Asia. In this study, a Japanese species, *S. quadristriatus* (Verhoeff, 1934), which is characterised by four longitudinal keels on the tergites, is re-described, based on the likely holotype preserved in the Zoologische Staatssammlung München and specimens newly collected from near the type locality. In addition, *S. longisetosus* **sp. nov.**, a new species that bears tergal keels like *S. quadristriatus*, is described from the Ryukyu Islands in Japan and Taiwan. Although the presence of four keels on tergites is unique to these two species, phylogenetic analyses using nuclear and mitochondrial markers showed that *S. longisetosus* **sp. nov.** is not sister to *S. quadristriatus*. The obtained phylogeny indicates that the tergal longitudinal keels evolved in parallel within *Scolopocryptops* or that the presence of keels represents a plesiomorphic character of the clade containing these species.

# Key Words

molecular phylogeny, nomenclature, plesiomorphic character, Ryukyu Islands, tergal keels

# Introduction

*Scolopocryptops* Newport, 1844 is a centipede genus that mostly inhabits epigean habitats in North and South America, West Africa, East Asia and Vietnam and species have been also recorded from India, the Philippines, Indonesia, New Guinea and Fiji (Chagas-Jr et al. 2023; Le et al. 2023). The genus currently comprises 33 species and subspecies, which are classified into two groups: the Asian/North American group and the Neotropical/Afrotropical group (Chagas-Jr et al. 2023; Le et al. 2023; Vahtera et al. 2013; Chagas-Jr et al. 2023; Le et al. 2023; Jonishi and Nakano 2023). Recent studies showed that the Asian/North American group consists of two lineages: a lineage composed of *S. elegans* (Takakuwa, 1937) and its closest relatives (hereinafter the *elegans* lineage),

which is known from Far East Asia and a lineage including the rest of the Asian and North American species (hereinafter, the ex-*elegans* lineage) (Jonishi and Nakano 2022, 2023).

*Scolopocryptops* centipedes are characterised by a distinctive kind of collared antennal setae, the absence of eyes, 23 leg-bearing segments (except for *S. sukuyan* Chagas-Jr, Edgecombe & Minelli, 2023, which has 25 segments) and an ultimate leg prefemur with one dorso-medial and/or one ventral spinous process (Koch et al. 2010; Chagas-Jr et al. 2023; Le et al. 2023). Several Asian/North American species, for example, *S. sexspinosus* (Say, 1821) and *S. spinicaudus* Wood, 1862, are distinguished from others by the absence of complete paramedian sutures on tergites (Le et al. 2023). Amongst them, the Japanese *S. quadristriatus* (Verhoeff, 1934) bears four longitudinal

Copyright Jonishi, T. & Nakano, T. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

keels on its tergites, which is a specific character that distinguishes this species from all other *Scolopocryptops* (Verhoeff 1934; Takakuwa 1940; Shinohara 1984; Le et al. 2023). After it was described as *Otocryptops sexspinosus quadristriatus*, based on a specimen from the vicinity of Tokyo, *S. quadristriatus* has been recorded from several localities in Honshu, the Izu Islands and Kyushu in the Japanese Archipelago (Shinohara 1949; Takashima and Shinohara 1952; Miyosi 1953; Takano 1973). Phylogenetic analyses indicated that this species belongs to the ex-*elegans* lineage (Jonishi and Nakano 2022). As summarised by Le et al. (2023), however, the taxonomic status of *S. quadristriatus* remains uncertain because only a low resolution of morphological features has been reported (Verhoeff 1934; Takakuwa 1939, 1940; Shinohara 1984).

In this study, a re-description of *S. quadristriatus*, based on the likely holotype is provided and newly-obtained specimens from near the type locality and adjacent areas were also investigated. In addition, several unidentified *Scolopocryptops* specimens obtained from the Ryukyu Islands in southern Japan and Taiwan have been studied. These individuals are morphologically similar to *S. quadristriatus*, but differ in several characters. Based on both morphological examination and phylogenetic analyses using nuclear and mitochondrial markers, these specimens are described as a new species herein.

## Methods

# Specimen collection and morphological observation

A specimen labelled as "Otocryptops sexspinosus quadristriatus" deposited at the Zoologische Staatssammlung München (ZSM A20051244), which is likely to represent the holotype of this taxon, was examined. Additional specimens of *S. quadristriatus* were collected from several localities in Tokyo and adjacent areas in eastern Honshu, Japan (Fig. 1). A total of 21 unidentified *Scolopocryptops* individuals were also collected from Okinawa, Ishigaki and Yonaguni Islands in the Ryukyu Islands and Hsinchu and Nantou Counties in Taiwan (Fig. 1). Specimens were placed in 30% ethanol for several minutes, fixed in 80% or 99% ethanol and then preserved in 75% ethanol. Ultimate leg-bearing segments of several specimens were dissected to examine genital segments.



**Figure 1.** Collection localities of *Scolopocryptops quadristriatus* (Verhoeff, 1934) and *S. longisetosus* sp. nov. in the present study. Purple circles: *S. quadristriatus*; red diamonds: *S. longisetosus* sp. nov.; black diamonds: localities of the sequence data of Taiwanese "*S. capillipedatus*" (= *S. longisetosus* sp. nov.) obtained from INSD. Locality numbers (Q1–Q3 and L1–L6) are shown in Table 1 and Fig. 13.

All specimens were observed using a Leica M125C stereoscopic microscope with a drawing tube (Leica Microsystems, Wetzlar, Germany). The specimens were photographed using a Sony a6500 digital camera and a 65 mm macro lens and a Leica MC170 HD digital camera mounted on the Leica M125C. Images captured with the Leica MC170 were processed using Leica Application Suite v. 4.1.2. Specimens examined are deposited in the Zoological Collection of Kyoto University (KUZ).

The terminology for external features followed Bonato et al. (2010). For dissected adults and individuals with everted genital organs, genital morphology was examined following Takakuwa (1933a), Demange and Richard (1969), Iorio (2003), Siriwut et al. (2016) and Jonishi and Nakano (2022, 2023).

#### DNA extraction, PCR and DNA sequencing

Total DNA was extracted using a NucleoSpin Tissue kit (Macherey-Nagel, Duren, Germany). Following previous studies (e.g. Edgecombe et al. (2012, 2019)), nuclear internal transcribed spacer 2 (ITS2), 28S rRNA (28S), mitochondrial cytochrome c oxidase subunit 1 (COI) and 16S rRNA (16S) markers were selected for phylogenetic analyses. The primer sets used are as follows: the 5.8SF/28SRev (Murienne et al. 2011) for ITS2, 28Sa/28Sb (Whiting et al. 1997) for 28S, LCO1490/ HCO2198 (Folmer et al. 1994) or the reverse primer HCOoutout (Schwendinger and Giribet 2005) for COI and 16Sar (Xiong and Kocher 1991)/16Sb (Edgecombe et al. 2002) for 16S. For ITS2 and 16S, reactions were performed using a LifeECO Thermal Cycler (Bioer Technology, Hangzhou, China); 28S and COI fragments were amplified using a GeneAmp PCR System 9700 (Thermo Fisher Scientific, Waltham, USA) and a T-100 Thermal Cycler (Bio-Rad, Hercules, USA), respectively. The PCR mixtures were heated to 94 °C for 5 min; followed by 35 cycles at 94 °C for 10 s, different annealing temperatures for each gene (50–60 °C for ITS2 and 16S, 60 °C for 28S and 50 °C for COI) for 20 s and 72 °C for 48 s for ITS2, 30 s for 28S and 16S and 42–48 s for COI; with a final extension at 72 °C for 6 min. The cycle sequencing reactions and sequencing process followed Jonishi and Nakano (2022, 2023). All sequences obtained in this study were deposited in the International Nucleotide Sequence Databases (INSD) through the DNA Data Bank of Japan (Table 1).

#### Molecular analyses

In addition to the 42 sequences obtained in this study, 39 sequences of Japanese and Taiwanese *Scolopocryptops* species (Jonishi and Nakano 2022, 2023) and 31 sequences of scolopocryptopid species retrieved from the INSD were included in the taxon set (Table 1).

The nuclear ITS2 sequences were aligned using MAFFT L-INS-i (Katoh and Standley 2013); the nuclear 28S and the mitochondrial 16S sequences were aligned using MAFFT Q-INS-i (Kuraku et al. 2013; Katoh et al. 2019) considering the RNA secondary structure; non-conserved regions of these genes were trimmed by Gblocks v. 0.91b (Castresana 2000). The mitochondrial COI sequences showed no indels; thus, alignment was straightforward. The first four COI positions were excluded from the analyses because this portion was missing in most of the sequences. The concatenated sequences yielded 2510 bp of aligned positions comprising 780 bp of ITS2, 536 bp of 28S, 654 bp of COI and 540 bp of 16S.

**Table 1.** Samples used for molecular analyses. The information on the voucher is accompanied by the collection locality and the INSD accession numbers of the DNA sequences. Locality numbers are shown in Fig. 1 and Fig.13. Acronyms: AMNH, American Museum of Natural History; KUZ; Zoological Collection of Kyoto University; MCZ, Museum of Comparative Zoology, Harvard University; and SYSU, National Sun Yat-sen University. References: 1, Jonishi and Nakano (2023); 2, Jonishi and Nakano (2022); 3, Chao et al. (unpublished); 4, Vahtera et al. (2013); 5, Vahtera et al. (2012); 6, Edgecombe et al. (2012); 7, Edgecombe and Giribet (2004); 8, Murienne et al. (2010). Sequences with an asterisk (\*) were used only in the preliminary analyses.

| Species                            | Voucher # | Locality                           | Locality # | INSD #   |          |          |          | References                               |
|------------------------------------|-----------|------------------------------------|------------|----------|----------|----------|----------|------------------------------------------|
|                                    |           |                                    |            | ITS2     | 28S      | COI      | 16S      | -                                        |
| Asian/North American Scolopoc      | ryptops   |                                    |            |          |          |          |          |                                          |
| S. quadristriatus (Verhoeff, 1934) | KUZ Z4083 | Hachioji, Tokyo, Japan             | Q1         | -        | LC700508 | LC700507 | LC792589 | This study for 16S;<br>2 for 28S and COI |
| S. quadristriatus (Verhoeff, 1934) | KUZ Z5098 | Ome, Tokyo, Japan                  | Q2         | LC792567 | LC792573 | LC792581 | LC792590 | This study                               |
| S. quadristriatus (Verhoeff, 1934) | KUZ Z5105 | Minamitsuru,<br>Yamanashi, Japan   | Q3         | -        | LC792574 | LC792582 | LC792591 | This study                               |
| S. longisetosus sp. nov.           | KUZ Z5108 | Kunigami, Okinawa<br>Island, Japan | L1         | LC792568 | LC792575 | LC792583 | LC792592 | This study                               |
| S. longisetosus sp. nov.           | KUZ Z5122 | Kunigami, Okinawa<br>Island, Japan | L2         | -        | LC792576 | LC792584 | LC792593 | This study                               |
| S. longisetosus sp. nov.           | KUZ Z5111 | Nago, Okinawa<br>Island, Japan     | L3         | LC792569 | LC792577 | LC792585 | LC792594 | This study                               |
| S. longisetosus sp. nov.           | KUZ Z5123 | Ishigaki Island, Japan             | L4         | LC792570 | LC792578 | LC792586 | LC792595 | This study                               |
| S. longisetosus sp. nov.           | KUZ Z5124 | Yonaguni Island,<br>Japan          | L5         | LC792571 | LC792579 | LC792587 | LC792596 | This study                               |

| Species                                                                                  | Voucher #                    | Locality                                  | Locality # |          | INSD #   |           |          | References                                              |
|------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|------------|----------|----------|-----------|----------|---------------------------------------------------------|
|                                                                                          |                              |                                           |            | ITS2     | 285      | COI       | 16S      | -                                                       |
| S. longisetosus sp. nov.                                                                 | KUZ Z5127                    | Nantou, Ren'ai,<br>Taiwan                 | L6         | LC792572 | LC792580 | LC792588  | LC792597 | This study                                              |
| "S. capillipedatus (Takakuwa, 1938)"<br>(= S. longisetosus sp. nov.)                     | SYSU<br>Chilo-044            | Yanping, Taitung,<br>Taiwan               | _          | _        | -        | AB617528* | _        | 3                                                       |
| "S. capillipedatus (Takakuwa, 1938)"<br>(= S. longisetosus sp. nov.)                     | SYSU<br>Chilo-056            | Heping, Taichung,<br>Taiwan               | -          | -        | -        | AB617529* | -        | 3                                                       |
| "S. capillipedatus (Takakuwa, 1938)"<br>(= S. longisetosus sp. nov.)                     | SYSU<br>Chilo-061            | Datong, Yilan, Taiwan                     | -          | -        | -        | AB617530* | -        | 3                                                       |
| "S. capillipedatus (Takakuwa, 1938)"                                                     | SYSU<br>Chilo-1/13           | Taoyuan, Kaohsiung,                       | -          | -        | _        | AB672646* | -        | 3                                                       |
| S. musashiensis Shinohara, 1984                                                          | KUZ Z4085                    | Ichikawa, Chiba,                          | -          | _        | LC700512 | LC700511  | LC792598 | This study for 16S;<br>2 for 28S and COL                |
| S. nigridius McNeil, 1887                                                                | MCZ                          | North Carolina, USA                       | _          | _        | HM453278 | AY288744  | AY288725 | 8 for 28S; 7 for<br>COL and 16S                         |
| S. nigridius McNeil, 1887                                                                | MCZ IZ-<br>130806            | North Carolina, USA                       | _          | _        | JX422594 | JX422680  | JX422704 | 6                                                       |
| "S. nipponicus" Shinohara, 1990                                                          | MCZ IZ-                      | Nagoya, Aichi, Japan                      | -          | _        | JX422595 | JX422681  | JX422705 | 6                                                       |
| S. ogawai Shinohara, 1984                                                                | KUZ Z4395                    | Fukuroi, Shizuoka,                        | _          | LC741599 | LC741600 | LC741601  | _        | 1                                                       |
| S. rubiginosus L. Koch, 1878                                                             | KUZ Z4082                    | Enoshima, Kanagawa,<br>Japan              | -          | LC741602 | LC700506 | LC700505  | LC792599 | This study for 16S;<br>1 for ITS2; 2 for<br>28S and COI |
| S. rubiginosus L. Koch, 1878                                                             | MCZ IZ-<br>130823            | Yuanshan, Yilan,<br>Taiwan                | -          | -        | -        | JX422682  | JX422706 | 6                                                       |
| S. sexspinosus (Say, 1821)                                                               | MCZ IZ-<br>131450            | North Carolina, USA                       | -          | _        | AY288710 | AY288745  | AY288726 | 7                                                       |
| S. spinicaudus Wood, 1862                                                                | AMNH IZC<br>00146514         | California, USA                           | _          | _        | JX422596 | JX422683  | JX422707 | 6                                                       |
| S. elegans (Takakuwa, 1937)                                                              | KUZ Z4062                    | Katsurahama, Kochi,<br>Japan              | -          | LC741566 | LC700494 | LC700493  | LC792600 | This study for 16S;<br>1 for ITS2; 2 for<br>28S and COI |
| S. elegans (Takakuwa, 1937)                                                              | KUZ Z4073                    | Higashimuro,<br>Wakayama, Japan           | _          | LC741569 | LC700500 | LC700499  | LC792601 | This study for 16S;<br>1 for ITS2; 2 for<br>28S and COI |
| S. elegans (Takakuwa, 1937)                                                              | KUZ Z4373                    | Akiruno, Tokyo, Japan                     | _          | LC741570 | LC741571 | LC741572  | LC792602 | This study for 16S;<br>1 for ITS2, 28S,<br>and COI      |
| S. miyosii Jonishi & Nakano, 2023                                                        | KUZ Z4375                    | Kirishima,<br>Kagoshima, Japan            | _          | LC741573 | LC741574 | LC741575  | LC792603 | This study for 16S;<br>1 for ITS2, 28S,<br>and COI      |
| S. miyosii Jonishi & Nakano, 2023                                                        | KUZ Z4374                    | Saeki, Oita, Japan                        | -          | LC741578 | LC741579 | LC741580  | LC792604 | This study for 16S;<br>1 for ITS2, 28S,<br>and COI      |
| S. miyosii Jonishi & Nakano, 2023                                                        | KUZ Z4380                    | Yamato-son, Amami<br>Island, Japan        | -          | LC741581 | LC741582 | LC741583  | LC792605 | This study for 16S;<br>1 for ITS2, 28S,<br>and COI      |
| <i>S. brevisulcatus</i><br>Jonishi & Nakano, 2023                                        | KUZ Z4389                    | Mt. Katsuu-dake,<br>Okinawa Island, Japan | _          | _        | LC741587 | LC741588  | LC792606 | This study for 16S;<br>1 for 28S and COI                |
| S. brevisulcatus<br>Jonishi & Nakano, 2023                                               | KUZ Z4392                    | Mt. Fuenchiji, Okinawa<br>Island, Japan   | _          | LC741589 | LC741590 | LC741591  | LC792607 | This study for 16S;<br>1 for ITS2, 28S,<br>and COI      |
| S. curtus (Takakuwa, 1939)                                                               | KUZ Z4079                    | Tai'an, Miaoli, Taiwan                    | -          | LC741597 | LC700502 | LC700501  | -        | 1 for ITS2; 2 for<br>28S and COI                        |
| S. curtus (Takakuwa, 1939)                                                               | KUZ Z4081                    | lriomote Island,<br>Okinawa, Japan        | -          | LC741598 | LC700504 | LC700503  | LC792608 | This study for 16S;<br>1 for ITS2; 2 for<br>28S and COI |
| Neotropical/Afrotropical Scolopo                                                         | cryptops                     |                                           |            |          |          |           |          |                                                         |
| "S. macrodon" (Kraepelin, 1903)<br>sensu Chagas-Jr (2008) and<br>Edgecombe et al. (2012) | MCZ IZ-<br>130814            | Guyana                                    | _          | _        | _        | JX422675  | JX422699 | 6                                                       |
| S. miersii Newport, 1845                                                                 | MCZ IZ-<br>130729            | Brazil                                    | -          | _        | KF676364 | JX422674  | JX422697 | 6 for COI and 16S;<br>4 for 28S                         |
| S. miersii Newport, 1845                                                                 | AMNH<br>LP3868,<br>IZ-130730 | French Guiana                             | _          | -        | _        | HQ402545  | JX422698 | 5 for COI; 6 for<br>16S                                 |
| Outgroup                                                                                 |                              |                                           |            |          |          |           |          |                                                         |
| Newportia monticola Pocock, 1890                                                         | MCZ IZ-<br>130777            | Parque de Cahuita,<br>Costa Rica          | -          | -        | KF676360 | KF676507  | HQ402497 | 5 for 16S; 4 for<br>28S and COI                         |

Maximum Likelihood (ML) and Bayesian Inference (BI) were applied to two separate datasets: a COI sequence dataset for preliminary analyses and a concatenated dataset of COI, 16S, ITS2 and 28S. The sequences of "S. capillipedatus (Takakuwa, 1938)" (see Results), of which only the COI region is available in the INSD (AB617528-AB617530, and AB672646), were used only in the preliminary analyses. The best-fit partition schemes and substitution models were identified, based on the Bayesian Information Criterion using ModelFinder (Kalyaanamoorthy et al. 2017) implemented in IQ-TREE v.1.6.12 (Nguyen et al. 2015) or PartitionFinder v.2.1.1 (Lanfear et al. 2016) with the "all" algorithm. The selected partition schemes and models are shown in Suppl. material 1. The ML phylogenetic trees were reconstructed using IQ-TREE v.1.6.12 with ultrafast bootstrapping (UFBoot; Hoang et al. (2017)) conducted with 1000 replicates. The BI trees and Bayesian posterior probabilities (BPP) were estimated using MrBayes v.3.2.7 (Ronquist et al. 2012). Two independent runs of four Markov chains were conducted for 10 million generations and the tree was sampled every 100 generations. Considering parameter estimates and assessments of convergence using Tracer v.1.7.2 (Rambaut et al. 2018), the first 2500 trees were discarded as burn-in.

Uncorrected pairwise distances for COI sequences (590–654 bp) were calculated with MEGA 11 (Tamura et al. 2021), with pairwise deletion of missing data (Suppl. material 2).

#### Results

#### Taxonomy

Order Scolopendromorpha Pocock, 1895 Family Scolopocryptopidae Pocock, 1896 Genus *Scolopocryptops* Newport, 1844

*Scolopocryptops quadristriatus* (Verhoeff, 1934) Figs 2–7

Japanese name: Yosuji-akamukade

- *Otocryptops sexspinosus quadristriatus* Verhoeff, 1934: 54; Takakuwa (1939: 699), fig. 3 (as *Octocryptops* [sic] *sexspinosus quadristriatus*); Takakuwa (1940: 73), fig. 77.
- *Scolopocryptops quadristriatus*: Shinohara (1984: 41); Shinohara et al. (2015: 880, 906); Le et al. (2023: 437, 442).

Not S. quadristriatus. "Otocryptops sexspinosus quadristriatus": Takakuwa (1933b: 1457, 1459) (nomen nudum).

**Type specimen.** Otocryptops s. quadristriatus was described, based on a single specimen from the vicinity of Tokyo, without any information on the collector, collecting date or deposition of the specimen (Verhoeff 1934). Most of the Verhoeff's specimens are now kept at the Zoologische Staatssammlung München (ZSM), the Museum für Naturkunde (MfN) and the Naturhistorischen Museums Wien (NHMW) (Melzer et al. 2011).

A specimen of O. s. quadristriatus is deposited at the ZSM, but neither MfN nor NHMW have specimens labelled as O. s. quadristriatus (Moritz and Fischer 1979; Schileyko and Stagl 2004). ZSM A20051244 (Fig. 2) is, thus, the only specimen of O. s. quadristriatus remaining within the Verhoeff's collection and is supposed to be the holotype of this nominal taxon, although the original label and collection data of this specimen are unavailable (Stefan Friedrich, personal communication). Its cephalic capsule, maxillae and left ultimate leg had been preserved in a separate vial (Fig. 2A); the body had been cut into two parts on leg-bearing segment 8 (Fig. 2B); its ultimate leg-bearing segment had been dissected. Additionally, its left legs 6, 8, 12, 14, 15, 17, 18, 20 and 22; right legs 3, 8, 12-18 and 20-22; and right ultimate leg had been lost or loosened; its left leg 16 was loosened during observation by the first author. Morphological features of the likely holotype are consistent with the original description and specimens newly obtained in this study. Thus, a description, based on both ZSM A20051244 and our specimens, is provided below.

Shinohara (1982) stated that a Japanese myriapodologist, the late Dr Yoshioki Takakuwa, sent a specimen of *O. s. quadristriatus* to Verhoeff. Given that Verhoeff also received other chilopod specimens from Takakuwa (e.g. Verhoeff (1934, 1935, 1937)), it is plausible that the likely holotype was also dispatched from Takakuwa to Verhoeff.

**Material examined.** *Holotype* (?): JAPAN • ♀ (approx. 33.5 mm); ZSM A20051244.

Additional material. JAPAN – Tokyo • 1, 33.9 mm (KUZ Z4083); Hachioji City, Uratakao-machi; 15 Apr 2017; Taiga Kato leg. • 1, 33.2 mm (KUZ Z5091); same data as for preceding • 1, 33.0 mm (KUZ Z5092); Hachioji City, Mt. Takao-san; 18 Nov 2017; T. Kato leg. • 1, 28.6 mm (KUZ Z5093); Hachioji City, Uratakao-machi; 35°38.69'N, 139°14.36'E; approx. 250 m alt.; 18 Oct 2021; T. Jonishi leg. • 1 3, 32.1 mm (KUZ Z5094) and 3, 33.1 mm (KUZ Z5095), 36.2 mm (KUZ Z5096), 27.7 mm (KUZ Z5097); same locality as for preceding; 35°38.72'N, 139°14.33'E; approx. 260 m alt.; 18 Oct 2021; T. Jonishi leg. • 1, 38.6 mm (KUZ Z5098); Ome City, Futamatao; 35°47.87'N, 139°13.56'E; approx. 230 m alt.; 19 Oct 2021; T. Jonishi leg. • 1 3, 38.2 mm (KUZ Z5099); Ome City, Sawai; 35°48.68'N, 139°10.91'E; approx. 350 m alt.; 19 Oct 2021; T. Jonishi leg. • 2, 33.6 mm (KUZ Z5100), 29.7 mm (KUZ Z5101) and 1 juvenile, 12.8 mm (KUZ Z5102); Akiruno City, Yokosawa; 35°44.28'N, 139°14.28'E; approx. 250 m alt.; 12 Apr 2022; Futaro Okuyama leg. • 1, 29.6 mm (KUZ Z5103); Hachioji City, Uratakao-machi; 35°38.75'N, 139°14.16'E; approx. 270 m alt.; 6 Nov 2022; T. Kato leg. – Saitama Prefecture • 1 ♀, 39.0 mm (KUZ Z5104); Hiki County, Hatoyama-machi; 36°0.01'N, 139°21.42'E; approx. 110 m alt.; 19 Oct 2021; T. Jonishi leg. – Yamanashi Prefecture • 1, 30.5 mm (KUZ Z5105); Minamitsuru County, Nishikatsura-cho; 35°30.82'N, 138°50.44'E; approx. 670 m alt.; 9 Apr 2022; Eitaro Matsushita leg. - Shizuoka Prefecture • 1, 30.4 mm (KUZ Z5106); Susono City, Suyama; 35°15.92'N, 138°47.95'E; approx. 910 m alt.; 2 June 2022; T. Nakano leg.



**Figure 2.** Scolopocryptops quadristriatus (Verhoeff, 1934), the likely holotype,  $\bigcirc$  (ZSM A20051244). A. Cephalic capsule, maxillae, legs and left ultimate leg; **B.** Forcipular segment, leg-bearing segments and legs. Scale bars: 5 mm.



**Figure 3.** Scolopocryptops quadristriatus (Verhoeff, 1934), collected from near the type locality,  $\bigcirc$  (KUZ Z5104) and the habitat near the type locality. **A.** Habitat at Ome City, Tokyo; **B.** Live specimen, dorsal view. Scale bar: 10 mm.



Figure 4. *Scolopocryptops quadristriatus* (Verhoeff, 1934) from near the type locality (KUZ Z5095). A. Basal articles of left antenna, dorsal view; B. Cephalic plate, dorsal view. Scale bars: 0.5 mm (A); 1 mm (B).

**Diagnosis.** Antenna with sparse short hairs and setae on dorsal surface of two basal articles, subsequent articles densely covered with short setae. Cephalic plate with complete lateral marginal sulci. Tergites lacking paramedian sutures, tergites 6–20 with four longitudinal keels and median depression bordered by paramedian keels.

**Description [variations given in square brackets].** Body length approx. 27.7–39.0 mm in 75% ethanol.



**Figure 5.** *Scolopocryptops quadristriatus* (Verhoeff, 1934) from near the type locality (KUZ Z5095). **A.** Cephalic plate and tergite 1, dorsal view; **B.** Distal part of article 2, article 3 and pretarsus of left second maxilla, medial view; **C.** Article 3 and pretarsus of left second maxilla, lateral view; **D.** Head, ventral view. Abbreviations: **am** — anterior margin of forcipular coxosternite; **bs** — basal suture on forcipular trochanteroprefemoral process; **db** — dorsal brush on article 3 of second maxilla; **ds** — dorsal spur on article 2 of second maxilla; **pt** — pretarsus of second maxilla; **ptr** — process of forcipular trochanteroprefemur. Scale bars: 1 mm (**A**, **D**); 0.2 mm (**B**, **C**).

Colour in life yellowish-brown with dark pigment on two basal antennal articles, purplish on subsequent articles; reddish-brown on forcipules; reddish-brown with dark pigment on anterior, lateral and posterior margins of cephalic plate, tergites 1, 22 and 23; purplish dark brown on tergites 2–21; legs and ultimate legs brownish-yellow or orange with bluish dark pigment (Fig. 3B). Colour in ethanol slightly greenish on tergites and legs (Fig. 6A).

Antennae 7.7–13.4 mm in length, approx.  $0.2-0.35 \times$  as long as body, composed of 17 articles; two basal articles with sparse short hairs and setae (sensu Bonato et al. (2010)) dorsally, subsequent articles densely covered with short setae (Fig. 4A); each seta emerging from small collar. Cephalic plate as long as wide; its surface sparsely punctate with sparse minute hairs, with complete lateral margination (Figs 4B, 5A).

Second maxillae article 2 with elongated and semi-transparent [dark brown] dorsal spur distally; dorsal

brush with transparent margination; pretarsus consisting of dark brown basal and semi-transparent short apical parts (Fig. 5B, C). Forcipular coxosternite and trochanteroprefemora sparsely punctate, coxosternite with median suture and transverse sutures cross median one on anterior third of coxosternite (Fig. 5D); trochanteroprefemur with small and blunt black process with basal suture (Fig. 5D); anterior margin of coxosternite strongly sclerotised and slightly convex, divided into two low lobes by median diastema (Fig. 5D).

Tergites sparsely punctate; tergite 1 with anterior transverse suture; anterior margin overlapped by cephalic plate (Figs 5A, 6A). All tergites lacking paramedian sutures; tergites 6 [5–7]–21 with longitudinal median depression bordered by paramedian keels, lateral keels present on tergites 6 [6–8]–20; median depression and keels unapparent on anterior and posterior tergites [depression and keels unapparent on all tergites in adult KUZ Z5099]



Figure 6. Scolopocryptops quadristriatus (Verhoeff, 1934) from near the type locality (KUZ Z5095). A. Cephalic plate and tergites 1–13, dorso-lateral view; B. Tergites 14–16, dorso-lateral view; C. Sternites 8–13, ventral view; D. Leg-bearing segments 3–8, lateral view; E. Sternite of ultimate leg-bearing segment and coxopleuron, ventral view; F. Left coxopleuron, lateral view; G. Tergite of ultimate leg-bearing segment, dorso-lateral view. Abbreviations: cxp — coxopleural process; dm — dorsal margin of ultimate pleuron; mds — minute dark spine on ultimate pleuron; sp — spiracle; tlk — tergal lateral keel; tm — tergal margination; tpk — tergal paramedian keel. Scale bars: 5 mm (A); 2 mm (B–D); 0.5 mm (E–G).

(Fig. 6A, B); tergites 6 [5–7]–21 [22] with complete or nearly complete lateral marginations (Fig. 6A, B); 2 or 3 short longitudinal sulci present on posterior margin of several tergites.

Sternites sparsely punctate, lacking paramedian sutures (Fig. 6C). Sides of sternite of ultimate leg-bearing segment converging posteriorly, posterior margin slightly concave [slightly convex in KUZ Z4083] (Fig. 6E).

Ovoid spiracles present on leg-bearing segments 3, 5, 8, 10, 12, 14, 16, 18, 20 and 22 (Fig. 6D).

Legs almost lacking setae [sparse minute setae present in several specimens]; tarsi of legs 1–21 undivided; legs 1–20 with lateral and ventral tibial spurs and tarsal spur, leg 21 with tibial spur and tarsal spur; leg 22 with tarsal spur only; all legs with two accessory spines.

Coxopleuron approx.  $1.5-1.7\times$  as long as sternite of ultimate leg-bearing segment (Fig. 6E, F). Dorsal margin of ultimate pleuron protruding from lateral side of tergite of ultimate leg-bearing segment, dorso-posterior margin with minute dark spine (Fig. 6F, G). Posterior and ventral margins of coxopleuron converging posteriorly, forming approx.  $60-75^{\circ}$  angle; coxopleural process short, tip of process pointed, slightly directed dorsally (Fig. 6F). Surface of coxopleuron without setae, covered with various-sized coxal pores (Fig. 6F). Pore-free area present on coxopleural process and dorso-posterior area of coxopleuron (Fig. 6F).



**Figure 7.** *Scolopocryptops quadristriatus* (Verhoeff, 1934) from near the type locality. **A.** KUZ Z5095; **B.** KUZ Z5094; **C.** KUZ Z5104. **A.** Left ultimate leg, lateral view; **B.** Male genital segments, penis and anal valves, ventral view; **C.** Female genital segment and anal valves, ventral view. Abbreviations: **av** — anal valve; **pn** — penis; **sgs I** — sternite of genital segment 1; **sgs II** — sternite of genital segment 2; **tg** — tergite of genital segment. Scale bars: 2 mm (**A**); 0.5 mm (**B**, **C**).

Ultimate leg 9.0–12.4 mm in length, approx.  $0.3 \times$  as long as body; all articles almost lacking setae [tarsi with sparse minute setae]; prefemur with two conical and pointed spinous processes, ventral process larger than dorso-medial one; pretarsus with two accessory spines (Fig. 7A).

Genital segments occupying approx.  $0.7-0.8 \times$  length of sternite of ultimate leg-bearing segment; tergite of genital segment covered with sparse minute setae (Fig. 7B, C). Sternite of genital segment 1 covered with sparse short setae, posterior margin weakly convex (Fig. 7B, C). Sternite of genital segment 2 well developed in male, covered with sparse short setae; posterior part of genital segment 2 overlapped by lamina subanalis, penis not visible in ventral view [penis visible in KUZ Z5094] (Fig. 7B); genital segment 2 not visible in female (Fig. 7C). Anal valves covered with sparse short setae (Fig. 7B, C).

**Distribution.** This species has been recorded from Honshu and the Izu Islands and is abundant in Tokyo and adjacent areas (Takakuwa 1939, 1940; Shinohara 1949; Takashima and Shinohara 1952; Takano 1973). Miyosi (1953) recorded *S. quadristriatus* from Nagasaki in Kyushu, but this species was not obtained during the survey conducted by the first author in Nagasaki and adjacent localities (25–27 July 2023).

Availability of "quadristriatus" based on Takakuwa's works. The name "Otocryptops sexspinosus quadristriatus", which was attributed to Verhoeff, was introduced by Takakuwa's two works (Takakuwa 1933a, b) before its formal description by Verhoeff in 1934. However, we herein decide that neither Takakuwa (1933a) nor Takakuwa (1933b) made the species-group name "quadristriatus" available. "Otocryptops sexspinosus quadristriatus Verh" first appeared in Takakuwa (1933a: 11), who intended to provide general anatomical features of Scolopocryptops (originally "Otocryptops"). Nonetheless, the detailed morphological features and figures provided in this work were unambiguously based on *S. rubiginosus* L. Koch, 1878 (referred as "*Otocryp-tops ruliginosus*" [sic]). Therefore, the name *quadris-triatus* in the combination of *Otocryptops sexspinosus quadristriatus* in Takakuwa (1933a) did not satisfy the provision of Article 13.1 of the International Code of Zoological Nomenclature (hereinafter, Code; International Commission on Zoological Nomenclature 1999) and thus is unavailable.

In a synopsis of the Japanese centipedes, Takakuwa (1933b: 1459) provided a brief taxonomic account and morphological descriptions of the subspecies referred as "Otocryptops sexspinosus quadristriatus VERHOEFF". However, Takakuwa considered that "O. s. quadristriatus" sensu Verhoeff was indistinguishable from the nominotypical subspecies "O. s. sexspinosus"; thus, he did not provide any description or definition that are purported to differentiate "O. s. quadristriatus" (see Article 13.1.1 of the Code). Therefore, we conclude that the species-group name quadristriatus in the combination of Otocryptops sexspinosus quadristriatus in Takakuwa (1933b) is also unavailable and the authorship of this nominal taxon is attributed to Verhoeff (1934), who established O. s. quadristriatus explicitly as a new subspecies. Moreover, according to Shinohara (1982, 1990), Takakuwa's (1933b) description of this taxon was based on specimen(s) misidentified as "O. sexspinosus"; O. s. quadristriatus sensu Takakuwa (1933b) was later described as S. nipponicus Shinohara, 1990 (placed in synonymy with S. spinicaudus by Shelley 2002).

**Remarks.** Verhoeff (1934) established this taxon as a subspecies of the North American *S. sexspinosus*, based on brief taxonomic accounts. He only described the absence of tergal paramedian sutures, the presence of four longitudinal keels on tergites and the colouration of head and leg-bearing segments.

Shinohara (1984) elevated *quadristriatus* to full species status, based on the following features: 1) cephalic marginal sulci reaching from postero-lateral margin of

cephalic plate to antennae; 2) tergites without paramedian sutures and with four longitudinal keels; 3) arrangement of tibial and tarsal spurs on legs 19–23; and 4) a slightly slender "general form" compared with other species of the genus. It is unclear whether Shinohara compared *quadristriatus* with the North American *O. sexspinosus sexspinosus* or the Japanese "*O. sexspinosus*" (see above) and the characters of 1), 3) and 4) cannot conclusively distinguish *quadristriatus* from other species. Nonetheless, the presence of four longitudinal keels on tergites distinguishes *S. quadristriatus* from all other *Scolopocryptops* (except *S. longisetosus* sp. nov.; see below). The distinctness of *S. quadristriatus* is also supported by the molecular phylogenetic analyses (Fig. 13).

This species is absent from, but should be added to Chilobase 2.0 (Bonato et al. 2016).

#### Scolopocryptops longisetosus sp. nov.

https://zoobank.org/3BCC9F07-141D-4D15-8613-3CE08877C0A6 Figs 8–12

Suggested Japanese name: Kuromadara-akamukade

Scolopocryptops capillipedatus: Chao and Chang (2003: 4), fig. 17; Chao (2008: 76–80), figs 82–87; Chao and Chang (2008: 14), fig. 9.

Material examined. Holotype: JAPAN - Okinawa Prefecture – Okinawa Island • ♂, 31.4 mm (KUZ Z5107); Kunigami-son, Uka; 26°48.45'N, 128°15.97'E; approx. 300 m alt.; 4 May 2021; F. Okuyama leg. Paratypes: JAPAN - Okinawa Prefecture - Okinawa Island • 1, 24.6 mm (KUZ Z5108); Kunigami-son, Oku; 26°48.3'N, 128°17.34'E; approx. 230 m alt.; 5 May 2021; F. Okuyama leg. • 1 ♂, 30.7 mm (KUZ Z5112); Nago City, Mt. Nago-dake; 26°35.45'N, 128°0.25'E; approx. 200 m alt.; 14 June 2022; T. Jonishi leg. • 1, 29.4 mm (KUZ Z5113); same locality as for preceding; 26°35.47'N, 128°0.27'E; approx. 210 m alt.; 14 June 2022; T. Jonishi leg. • 1 ♀, 28.9 mm (KUZ Z5115); same locality as for preceding; 26°35.73'N, 128°0.19'E; approx. 190 m alt.; 14 June 2022; T. Jonishi leg. • 1 ♂, 31.1 mm (KUZ Z5117); Kunigami-son, Uka; 26°48.43'N, 128°16.04'E; approx. 330 m alt.; 15 June 2022; T. Jonishi leg. • 1 3, 37.2 mm (KUZ Z5119); Kunigami-son, Benoki; 26°48.06'N, 128°16.65'E; approx. 350 m alt.; 15 June 2022; T. Jonishi leg. • 1, 30.4 mm (KUZ Z5121); Kunigami-son, Yona, Mt. Fuenchiji; 26°45.15'N, 128°14.58'E; approx. 380 m alt.; 16 June 2022; T. Kato leg. • 1, 28.6 mm (KUZ Z5122); same locality as for preceding; 26°45.17'N, 128°14.58'E; approx. 380 m alt.; 16 June 2022; T. Jonishi leg.

Additional material. JAPAN – Okinawa Prefecture – Okinawa Island • 1  $\Diamond$ , 30.2 mm (KUZ Z5109); Kunigami-son, Uka; 26°48.30'N, 128°16.11'E; approx. 320 m alt.; 4 Jan 2022; F. Okuyama leg. • 2 juveniles, approx. 10 mm (KUZ Z5110), 1  $\bigcirc$ , 24.4 mm (KUZ Z5111); Nago City, Mt. Nago-dake; 26°35.45'N, 128°0.25'E; approx. 200 m alt.; 14 June 2022; T. Jonishi leg. • 1, 23.4 mm (KUZ Z5114); same locality as for preceding; 26°35.47'N, 128°0.27'E; approx. 210 m alt.; 14 June 2022; T. Kato leg. • 1  $\bigcirc$ , 29.4 mm (KUZ Z5116); same locality as for preceding; 26°35.73'N, 128°0.19'E; approx. 190 m alt.; 14 June 2022; T. Kato leg. • 1, 24.5 mm (KUZ Z5118); Kunigami-son, Uka; 26°48.43'N, 128°16.04'E; approx. 330 m alt.; 15 June 2022; T. Jonishi leg. • 1, 27.2 mm (KUZ Z5120); Kunigami-son, Benoki; 26°48.04'N, 128°16.62'E; approx. 360 m alt.; T. Jonishi leg. - Ishigaki Island • 1, 19.9 mm (KUZ Z5123); Hirakubo; 24°35.01'N, 124°20.15'E; approx. 20 m alt.; 17 Dec 2021; F. Okuyama leg. - Yonaguni Island • 2 3, 27.8 mm (KUZ Z5124), 20.8 mm (KUZ Z5125); Mantabaru Forest Park; 24°27.39'N, 122°58.56'E; approx. 100 m alt.; 16 Apr 2022; Naoto Sawada leg. TAIWAN • 1, 21.5 mm (KUZ Z5126); Hsinchu County, Wufeng Township, Shei-Pa National Park; 24°30.01'N, 121°4.61'E; 19 Mar 2019; T. Nakano leg. • 1, 22.2 mm (KUZ Z5127); Nantou County, Ren'ai Township; 24°5.1'N, 121°10.73'E; 21 Mar 2019; T. Nakano leg.

**Type locality.** Japan, Okinawa Prefecture, Okinawa Island, Kunigami-son, Uka (26°48.45'N, 128°15.97'E, approx. 300 m alt.).

**Diagnosis.** Antenna with sparse hairs and setae of various lengths dorsally on two basal articles, subsequent articles densely covered with long setae and minute setae. Cephalic plate with complete lateral marginal sulci. Tergites lacking paramedian sutures, tergites 5–20 with four longitudinal keels and median depression bordered by paramedian keels.

**Description of holotype [data from other specimens given in square brackets].** Body length approx. 31.4 mm [19.9–37.2 mm] in 75% ethanol. Colour in life and in ethanol yellowish-brown with dark pigment on two basal antennal articles, purplish on subsequent articles; reddish-brown on forcipules; reddish-brown with dark pigment on lateral and posterior margins of cephalic plate, tergites 1, 22 and 23; brown with dark pigment on tergites 2–21; legs and ultimate legs brownish-yellow or orange with purplish dark pigment (Figs 8B, 10A, 11A).

Antennae 10.1 mm in length, approx.  $0.3 \times$  as long as body, composed of 17 articles; dorsal surface of two basal articles with sparse hairs and setae (sensu Bonato et al. (2010)) of various lengths, subsequent articles densely covered with long setae and minute short setae [in small specimens, most setae from article 3 shorter than those of two basal articles] (Fig. 9A); setae emerging from various-sized collars. Cephalic plate as long as wide; its surface sparsely punctate with minute hairs, with complete lateral margination (Figs 9B, 10A).

Second maxillae article 2 with elongated and semi-transparent dorsal spur distally; dorsal brush with transparent margin; pretarsus consisting of dark brown basal and semi-transparent short apical parts (Fig. 10C, D). Forcipular coxosternite and trochanteroprefemur sparsely punctate, coxosternite with transverse sutures on anterior third of coxosternite; trochanteroprefemur with small and blunt black process and basal suture; anterior margin of coxosternite strongly sclerotised and slightly convex, divided into two low lobes by median diastema (Fig. 10E).



**Figure 8.** Scolopocryptops longisetosus sp. nov., paratype,  $\mathcal{E}$  (KUZ Z5119: **B**), non-type specimen from Yonaguni Island,  $\mathcal{E}$  (KUZ Z5124: **C**) and habitat near the type locality. **A.** Habitat (laurel tree forest) on Okinawa Island; **B, C.** Live specimen, dorsal view. Scale bars: 10 mm.



Figure 9. *Scolopocryptops longisetosus* sp. nov., holotype, ♂ (KUZ Z5107). A. Basal articles of left antenna, dorsal view; B. Cephalic plate, dorsal view. Scale bars: 0.5 mm (A); 1 mm (B).

Tergites sparsely punctate [sparse minute setae present in small individuals]; tergite 1 with anterior transverse suture, anterior margin overlapped by cephalic plate (Figs 10A, 11A). All tergites lacking paramedian sutures; tergites 5 [4]–21 [20] with longitudinal median depression bordered by paramedian keels, lateral keels present on tergites 5 [5–8]–20 [18–20]; median depression and keels unapparent on anterior and posterior tergites [depression and keels unapparent on all tergites in KUZ Z5119, Z5126 and Z5127] (Fig. 11A, B); lateral marginations complete or nearly complete on tergites 7 [5–7]–21 [22] (Fig. 11A, B); three short longitudinal sulci present on posterior margin of tergites 4, 6 [2 or 3 sulci present on tergites 3–21; absent in several specimens]. Sternites sparsely punctate, lacking paramedian sutures (Fig. 11C). Sides of sternite of ultimate leg-bearing segment converging posteriorly, posterior margin almost straight [slightly concave] (Fig. 11E).

Ovoid spiracles present on leg-bearing segments 3, 5, 8, 10, 12, 14, 16, 18, 20 and 22 (Fig. 11D).

Legs on anterior leg-bearing segments with sparse minute setae [setae denser in small individuals], posterior legs almost lacking setae [all legs setose in KUZ Z5123]; tarsi of legs 1–21 undivided; legs 1–19 with lateral and ventral tibial spurs and tarsal spur, legs 20 and 21, respectively, with tibial spur and tarsal spur; leg 22 without spurs. All legs with two accessory spines.

Coxopleuron approx.  $1.8 \times [1.5-1.8 \times]$  as long as sternite of ultimate leg-bearing segment (Fig. 11F).



**Figure 10.** *Scolopocryptops longisetosus* sp. nov., holotype,  $\mathcal{O}$  (KUZ Z5107: **A**, **C**–**E**) and non-type specimen from Yonaguni Island,  $\mathcal{O}$  (KUZ Z5124: **B**). **A**, **B**. Cephalic plate and tergite 1, dorsal view; **C**. Distal part of article 2, article 3 and pretarsus of left second maxilla, medial view; **D**. Article 3 and pretarsus of left second maxilla, lateral view; **E**. Head, ventral view. Abbreviations: **am** — anterior margin of forcipular coxosternite; **bs** — basal suture on forcipular trochanteroprefemoral process; **db** — dorsal brush on article 3 of second maxilla; **ds** — dorsal spur on article 2 of second maxilla; **pt** — pretarsus of second maxilla; **ptr** — process of forcipular trochanteroprefemur. Scale bars: 1 mm (**A**, **B**, **E**); 0.2 mm (**C**, **D**).

Dorsal margin of ultimate pleuron protruding from lateral margin of tergite of ultimate leg-bearing segment, dorso-posterior margin with minute dark spine (Fig. 11F, G). Posterior and ventral margins of coxopleuron converging posteriorly, forming approx. 60° [60–65°] angle; coxopleural process short, tip of process pointed, slightly directed dorsally (Fig. 11F). Surface of coxopleuron without setae, covered with various-sized coxal pores (Fig. 11F). Pore-free area present on coxopleural process and dorso-posterior region of coxopleuron (Fig. 11F).

Ultimate leg 10.8 mm in length, approx.  $0.3 \times [0.3 - 0.37 \times]$  as long as body; prefemur, femur and tibia almost lacking setae, tarsi with sparse minute setae [tarsi almost lacking setae]; prefemur with two conical and pointed spinous processes, ventral process larger than dorso-medial one; pretarsus with two accessory spines (Fig. 12A).



Figure 11. Scolopocryptops longisetosus sp. nov., holotype,  $\delta$  (KUZ Z5107). A. Cephalic plate and tergites 1–12, dorso-lateral view; **B.** Tergites 10–12, dorso-lateral view; **C.** Sternites 6–12, ventral view; **D.** Leg-bearing segments 3–8, lateral view; **E.** Sternite of ultimate leg-bearing segment, ventral view; **F.** Left coxopleuron, lateral view; **G.** Tergite of ultimate leg-bearing segment, dorso-lateral view. Abbreviations: **cxp** — coxopleural process; **dm** — dorsal margin of ultimate pleuron; **mds** — minute dark spine on ultimate pleuron; **sp** — spiracle; **tlk** — tergal lateral keel; **tm** — tergal margination; **tpk** — tergal paramedian keel. Scale bars: 5 mm (**A**); 2 mm (**B–D**); 0.5 mm (**E–G**).

Genital segments occupying approx.  $0.8 \times$  length of sternite of ultimate leg-bearing segment; tergite of genital segment sparsely setose (Fig. 12C, D). Sternite of genital segment 1 sparsely covered with setae, posterior margin slightly convex (Fig. 12C, D). Sternite of genital segment 2 well developed, covered with sparse setae; penis visible in ventral view; anal valves covered with sparse setae [in female, genital segment 1 as described for holotype; genital segment 2 not visible; anal valves as described for holotype] (Fig. 12C–E).

Variation. In specimens from the southern Ryukyus (Ishigaki and Yonaguni Islands; KUZ Z5123–Z5125)

and Taiwan (KUZ Z5126, Z5127), dark pigment on cephalic plate absent or almost reduced (Figs 8C, 10B); ultimate leg with femur [tibia] and subsequent articles densely setose [setae relatively sparse in KUZ Z5127] (Fig. 12B).

**Etymology.** The specific name is derived from the Latin compound adjective, "longus" (long) and "setosus" (hairy), referring to the long antennal setae of this new species.

**Distribution.** This species is known from Okinawa, Ishigaki and Yonaguni Islands in the Ryukyu Islands, Japan and is also widespread in Taiwan.



**Figure 12.** *Scolopocryptops longisetosus* sp. nov., holotype,  $\Diamond$  (KUZ Z5107: **A**, **C**, **D**); non-type specimen from Yonaguni Island,  $\Diamond$  (KUZ Z5124: **B**); paratype,  $\heartsuit$  (KUZ Z5115: **E**). **A**, **B**. Left ultimate leg, lateral view; **C**. Male genital segments, penis and anal valves, ventral view; **D**. Male genital segments, penis and anal valves, lateral view; **E**. Female genital segment and anal valves, ventral view. Abbreviations: **av** — anal valve; **pn** — penis; **sgs I** — sternite of genital segment 1; **sgs II** — sternite of genital segment 2; **tg** — tergite of genital segment. Scale bars: 2 mm (**A**, **B**); 0.5 mm (**C**–**E**).

**Remarks.** This species resembles *S. quadristria*tus, but *S. longisetosus* sp. nov. can be distinguished by the presence of long antennal setae (vs. setae short in *S. quadristriatus*; also see the Identification key provided in the Discussion).

The phylogenetic analyses indicate that specimens of this species from Taiwan have been misidentified as *S. capillipedatus*, based on the dense setae on ultimate legs (Chao and Chang 2003, 2008; Chao 2008). However, *S. longisetosus* sp. nov. can be distinguished from *S. capillipedatus* by the presence of longitudinal keels and median depression on tergites.

**Molecular phylogeny and genetic distances.** The ML (ln L = -14816.13; not shown) and BI (mean ln L = -14846.27; Fig. 13) trees had almost identical topologies. In the Asian/North American group (UFBoot = 100%, BPP = 1.0), both the *elegans* lineage (UFBoot = 100%, BPP = 1.0) and the ex-*elegans* lineage (UFBoot = 98%, BPP = 1.0) were recovered as monophyletic groups. Within the latter lineage, the recovery of *S. quadristriatus* (UFBoot = 100%, BPP = 1.0) and *S. longisetosus* sp. nov. (UFBoot = 100%, BPP = 1.0) was strongly supported.

Although the interspecific relationships remained largely undetermined, the analyses showed that *S. longise-tosus* sp. nov. is sister to a clade comprising three of the Japanese nominal species, *S. ogawai* Shinohara, 1984, *S. musashiensis* Shinohara, 1984 and "*S. nipponicus*" sensu

Edgecombe et al. (2012) (UFBoot = 99%, BPP = 1.0) (Fig. 13).

In the preliminary analyses using the COI dataset, four sequences of "*S. capillipedatus*" from Taiwan (AB617528–AB617530, AB672646) were nested within *S. longisetosus* sp. nov. (UFBoot = 98%, BPP = 0.99; Suppl. material 3), but the relationships amongst populations were not resolved. In contrast, the concatenated analyses recovered two lineages within *S. longisetosus* sp. nov., which corresponded to the specimens from Okinawa Island (UFBoot = 100%, BPP = 1.0) and those from the southern Ryukyu Islands and Taiwan (UFBoot = 98%, BPP = 0.99). The COI pairwise distances within each lineage were 2.56–4.74% (Okinawa Island) and 4.89–9.17% (southern Ryukyus and Taiwan; including the sequences of Taiwanese "*S. capillipedatus*"). The divergence between the two lineages was 5.77–8.87% (Suppl. material 2).

## Discussion

In the obtained phylogenetic trees, *S. quadristriatus* and *S. longisetosus* sp. nov. were strongly supported as monophyletic lineages. The analyses indicated that *S. longisetosus* sp. nov. comprises two lineages: Okinawa Island and the southern Ryukyus-Taiwan. These lineages differ in two external features, i.e. the presence/absence of dark pigment



**Figure 13.** Bayesian Inference tree for 2510 bp-aligned positions of the ITS2, 28S, 16S and COI sequences. Real branch length is shown on the upper left. Numbers on nodes indicate ultrafast bootstrap values (UFBoot) and Bayesian posterior probabilities (BPP). An asterisk denotes the node with UFBoot = 100% and BPP = 1.0. Locality numbers (Q1–Q3 and L1–L6) are shown in Fig. 1 and Table 1.

on the cephalic plate and the density of setae on ultimate legs. However, the pigmentation is subject to intraspecific variation in this genus and other scolopendromorph taxa and the density of the ultimate leg setae is also variable within Scolopocryptops species (e.g. Lewis (2003); Le et al. (2023)). It should be noted that the body lengths of the specimens from the southern Ryukyus and Taiwan (19.9-27.8 mm) were generally smaller than those from Okinawa Island (23.4-37.2 mm; juveniles excluded). Nonetheless, body length difference is not considered a taxonomic character here because it may be the result of different growth rates under different habitats (as speculated on Cryptops species; Lewis (2007)) or simply due to sampling bias. Additionally, because the COI genetic distances between the two lineages (5.77-8.87%) fell within the intraspecific divergence of Scolopocryptops (Garrick et al. 2018) and is smaller than the divergence amongst the sequences from the southern Ryukyus and Taiwan (4.89–9.17%), all the specimens from the Ryukyu Islands and Taiwan are considered a single species, S. longisetosus sp. nov.

It is noteworthy that four COI sequences of "*S. capillipedatus*" from Taiwan belonged to *S. longisetosus* sp. nov. (Suppl. material 3). *Scolopocryptops capillipedatus*, which is characterised by the dense setae on femur and subsequent articles of ultimate legs, was originally described from South Korea and has been recorded from Japan, Taiwan and Vietnam (Takakuwa 1938; Miyosi 1971; Chao and Chang 2003, 2008; Chao 2008; Le et al. 2023). Chao (2008) provided a description of Taiwanese

"S. capillipedatus" and noted that there were numerous long setae densely covering the femur, tibia and tarsi of the ultimate leg. However, this nominal species is clearly distinct from S. longisetosus sp. nov. because tergal keels are absent in S. capillipedatus (Takakuwa 1938, 1940). Although Chao (2008) did not mention the presence or absence of tergal keels, our specimens from Taiwan (KUZ Z5126 and Z5127) exhibited the characteristic longitudinal keels on tergites. The present result thus indicates that the records of "S. capillipedatus" from Taiwan were based on misidentified specimens of S. longisetosus sp. nov. Chao (2008) also described an unapparent median suture on tergites 1-3, which was not observed in our specimens, but described in Takakuwa's (1938) original description of S. capillipedatus. Morphological variability amongst Taiwanese populations needs to be examined, based on further taxon sampling.

Scolopocryptops longisetosus sp. nov. is quite similar to S. quadristriatus because they both have four longitudinal keels and median depression on tergites, as well as dark pigmentation on antennae and the dorsal surface of the body. Despite their phenotypic similarities, phylogenetic analyses did not support their sister relationship, but united S. longisetosus sp. nov. with three Japanese nominal species, S. ogawai, S. musashiensis and "S. nipponicus", which lack tergal keels (Fig. 13). The obtained phylogeny thus indicates that the longitudinal keels on tergites evolved in parallel within Scolopocryptops or that the presence of keels represents a plesiomorphic character of the clade comprising these species. Within *Scolopocryptops*, the tergal keels and median depression are unique to these two species and *S. hoanglieni* Le, Schileyko & Nguyen, 2023, which bears

""drop-like' longitudinal median depression bordered by paramedian keels" (Le et al. 2023). However, the phylogenetic implication of the tergal keels remains uncertain because the phylogenetic position of *S. hoanglieni* is undetermined (Le et al. 2023).

It is also notable that all members of the ex-*elegans* lineage, except *S. rubiginosus*, lack complete paramedian sutures on tergites (Shinohara 1984, 1990; Shelley

2002; Le et al. 2023), whereas all species of the *elegans* lineage and most of the Neotropical/Afrotropical species bear complete paramedian sutures (e.g. Chagas-Jr (2008); Chagas-Jr et al. (2023); Jonishi and Nakano (2023); Le et al. (2023)). Nonetheless, the evolutionary history of their paramedian sutures and the tergal keels remains unclear because the analyses failed to reconstruct a robust phylogeny of the ex-*elegans* lineage. Further systematic studies, for example, phylogenetic analyses using a larger taxon set including data from additional loci, need to be conducted to reveal the morphological evolution of *Scolopocryptops* species.

#### An identification key to Scolopocryptops species of East Asia

Diagnostic characters and known localities mainly follow Le et al. (2023), but were updated, based on Jonishi and Nakano (2023) and the present study.

| 1  | Leg-bearing segment 7 with well-developed spiracles                                                                                                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _  | Leg-bearing segment 7 lacking spiracles                                                                                                                               |
| 2  | Tergite of ultimate leg-bearing segment with median sutureS. broelemanni broelemanni Kraepelin, 1903 (eastern China)                                                  |
| _  | Tergite of ultimate leg-bearing segment lacking median suture S. broelemanni esulcatus Attems, 1938 (southern Vietnam)                                                |
| 3  | Cephalic plate with complete lateral margination                                                                                                                      |
| _  | Cephalic plate lacks lateral margination or margination is much shortened4                                                                                            |
| 4  | Length of the ultimate leg up to 40% of body length S. zhijiensis Qiao, Xiao & Di, 2021 (southern China)                                                              |
| _  | Length of the ultimate leg less than 30% of body length5                                                                                                              |
| 5  | Coxosternite with anterior margin concave, tergites without lateral margination                                                                                       |
|    |                                                                                                                                                                       |
|    | Afrotropical" species recorded from Lanyu Island in Taiwan and southern Vietnam) (Chao and Chang 2003; Chao 2008)                                                     |
| _  | Coxosternite with anterior margin convex or almost straight, tergites 6-21 or 20 with lateral marginations                                                            |
| 6  | Only basalmost antennal article with sparse minute setae or all articles densely setose; coxopleural process moderately long                                          |
| -  | Several basal antennal articles with sparse minute setae; coxopleural process short                                                                                   |
| 7  | Cephalic plate lacks lateral margination; dorsal margin of ultimate pleuron not protruding from tergite of ultimate                                                   |
|    | leg-bearing segment                                                                                                                                                   |
| -  | Cephalic plate with short lateral margination; dorsal margin of ultimate pleuron slightly protruding from tergite of ulti-<br>mate leg-bearing segment                |
| 8  | Three or two basal antennal articles with sparse minute setae; sclerotised bands on anterior margin of coxosternite                                                   |
|    | almost reaching outer partS. miyosii Jonishi & Nakano, 2023 (Kyushu and Amami Island in Japan)                                                                        |
| -  | Four basal antennal articles with sparse minute setae, sclerotised bands on anterior margin of coxosternite not reaching outer part                                   |
| 9  | Length of the ultimate leg more than 40% of body length; tarsus 1 and 2 of leg 22 each with well-developed spur<br>S. longipes Xiao, Chen & Di, 2021 (southern China) |
| _  | Length of the ultimate leg approx. 30% of body length or less; leg 22 mostly with 1 tarsal spur or lacking spur 10                                                    |
| 10 | Tergites with complete paramedian sutures S. rubiginosus L. Koch, 1878 (China, Korea, Japan, Taiwan and Vietnam)                                                      |
| _  | Tergites without complete paramedian sutures                                                                                                                          |
| 11 | Tergites with median depression bordered by paramedian keels                                                                                                          |
| _  | Tergites without median depression                                                                                                                                    |
| 12 | Tergites with drop-like median depression; lateral keels absent                                                                                                       |
|    | S. hoanglieni Le, Schileyko & Nguyen, 2023 (northern Vietnam)                                                                                                         |
| -  | Tergites with longitudinal median depression; lateral keels present                                                                                                   |
| 13 | Antennal articles covered with short setae                                                                                                                            |
| -  | Antennal articles covered with long setae and short setae. S. longisetosus sp. nov. (Ryukyu Islands in Japan and Taiwan)                                              |
| 14 | Two basal antennal articles sparsely setose dorsally; tibia and tarsus of ultimate leg densely setose                                                                 |
|    | S. capillipedatus (Takakuwa, 1938) (Korea, Japan,                                                                                                                     |
|    | and Vietnam) + S. ogawai Shinohara, 1984 (Japan) + S. musashiensis Shinohara, 1984 (Japan) (see Le et al. (2023))                                                     |
| -  | Two basal antennal articles almost lacking setae dorsally; distal articles of ultimate legs mostly not setose S. spinicaudus                                          |
|    | wood, 1862 (Unina, Korea, Japan, Taiwan, Vietnam) + "S, <i>nipponicus"</i> Shinohara, 1990 (Japan) (see Le et al. (2023))                                             |

#### Acknowledgements

We give special gratitude to Stefan Friedrich (ZSM), Dr Roland Melzer (ZSM) and Dr Juliana Bahia (ZSM) for providing the opportunity to examine the specimen of "O. s. quadristriatus". The authors are grateful to Dr Gregory D. Edgecombe (Natural History Museum, London) and an anonymous reviewer for their valuable comments and suggestions on this manuscript. We also express our gratitude to Yasunori Hagino (Natural History Museum and Institute, Chiba) for providing literature; Dr Yi-Te Lai (National Taiwan University), Futaro Okuyama, Taiga Kato (Kyoto University; KU), Eitaro Matsushita (KU), Dr Naoto Sawada (The University of Tokyo), and Yusuke Sugawara for their help with collecting material; and Ryosuke Kuwahara and Ryosuke Uno (KU) for suggesting appropriate literature. We also thank Dr Mallory Eckstut, from Edanz (https://jp.edanz. com/ac) for editing a draft of this manuscript. This study was supported by JST SPRING (grant number JPMJSP2110) and the Sasakawa Scientific Research Grant from the Japan Science Society (grant number 2022-5017) to TJ, and JSPS KAKENHI (grant number JP22K06371) to TN.

#### References

- Attems C (1938) Die von Dr. C. Dawydoff in Französisch Indochina gesammelten Myriopoden. Mémoires du Muséum national d'histoire naturelle, Nouvelle Série 6(2): 187–353. https://www.biodiversitylibrary.org/item/277837
- Bonato L, Edgecombe GD, Lewis JGE, Minelli A, Pereira LA, Shelley RM, Zapparoli M (2010) A common terminology for the external anatomy of centipedes (Chilopoda). ZooKeys 69: 17–51. https://doi. org/10.3897/zookeys.69.737
- Bonato L, Chagas-Jr A, Edgecombe GD, Lewis JGE, Minelli A, Pereira LA, Shelley RM, Stoev P, Zapparoli M (2016) ChiloBase 2.0–A World Catalogue of Centipedes (Chilopoda). *Scolopocryptops* Newport, 1844. https://chilobase.biologia.unipd.it/searches/result\_ genres/129 [Accessed 20 March 2024]
- Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17(4): 540–552. https://doi.org/10.1093/oxfordjournals. molbev.a026334
- Chagas-Jr A (2008) Revisão Sistemática e Análise Filogenética dos Scolopocryptopinae (Chilopoda, Scolopendromorpha). PhD thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Chagas-Jr A, Edgecombe GD, Minelli A (2023) An unknown segment number in centipedes: a new species of *Scolopocryptops* (Chilopoda: Scolopendromorpha) from Trinidad with 25 leg-bearing segments. Organisms Diversity & Evolution 23(2): 369–380. https://doi.org/10.1007/s13127-022-00591-7
- Chao JL (2008) Scolopendromorpha (Chilopoda) of Taiwan: Collection, Description, Illustration, Taxonomy, Distribution. VDM Verlag Dr. Müller Aktiengesellschaft & Co. KG, Saarbrücken, 94 pp.
- Chao JL, Chang HW (2003) The scolopendromorph centipedes (Chilopoda) of Taiwan. African Invertebrates 44(1): 1–11. https://hdl.handle.net/10520/EJC84516
- Chao JL, Chang HW (2008) Neotype designation for two centipedes, Scolopocryptops curtus (Takakuwa, 1939) and Cryptops nigropictus

Takakuwa, 1936, and a review of species of Scolopendromorpha (Chilopoda) in Taiwan. Collection and Research 21: 1–15.

- Demange JM, Richard J (1969) Morphologie de l'appareil génital mâle des Scolopendromorphes et son importance en systématique (Myriapodes Chilopodes). Bulletin du Muséum National d'Historie Naturelle 2e Série 40(5): 968–983. https://www.biodiversitylibrary.org/page/55344151
- Edgecombe GD, Giribet G (2004) Adding mitochondrial sequence data (16S rRNA and cytochrome *c* oxidase subunit I) to the phylogeny of centipedes (Myriapoda: Chilopoda): an analysis of morphology and four molecular loci. Journal of Zoological Systematics and Evolutionary Research 42(2): 89–134. https://doi.org/10.1111/j.1439-0469.2004.00245.x
- Edgecombe GD, Giribet G, Wheeler WC (2002) Phylogeny of Henicopidae (Chilopoda: Lithobiomorpha): a combined analysis of morphology and five molecular loci. Systematic Entomology 27(1): 31–64. https://doi.org/10.1046/j.0307-6970.2001.00163.x
- Edgecombe GD, Vahtera V, Stock SR, Kallonen A, Xiao X, Rack A, Giribet G (2012) A scolopocryptopid centipede (Chilopoda: Scolopendromorpha) from Mexican amber: synchrotron microtomography and phylogenetic placement using a combined morphological and molecular data set. Zoological Journal of the Linnean Society 166(4): 768–786. https://doi.org/10.1111/j.1096-3642.2012.00860.x
- Edgecombe GD, Huey JA, Humphreys WF, Hillyer M, Burger MA, Volschenk ES, Waldock JM (2019) Blind scolopendrid centipedes of the genus *Cormocephalus* from subterranean habitats in Western Australia (Myriapoda: Scolopendromorpha: Scolopendridae). Invertebrate Systematics 33(6): 807–824. https://doi.org/10.1071/IS19015
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome *c* oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3(5): 294–299.
- Garrick RC, Newton KE, Worthington RJ (2018) Cryptic diversity in the southern Appalachian Mountains: Genetic data reveal that the red centipede, *Scolopocryptops sexspinosus*, is a species complex. Journal of Insect Conservation 22(5–6): 799–805. https://doi. org/10.1007/s10841-018-0107-3
- Hoang DT, Chernomor O, Haeseler A, Minh BQ, Vinh LS (2017) UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution 35(2): 518–522. https://doi.org/10.1093/molbev/msx281
- International Commission on Zoological Nomenclature (1999) International code of zoological nomenclature. Fourth Edition. The International Trust for Zoological Nomenclature, London.
- Iorio E (2003) Morphologie externe des appareils génitaux mâle et femelle de la famille Scolopendridae (Chilopoda, Scolopendromorpha). Bulletin de Phyllie 16: 10–16.
- Jonishi T, Nakano T (2022) Taxonomic accounts and phylogenetic positions of the Far East Asian centipedes *Scolopocryptops elegans* and *S. curtus* (Chilopoda: Scolopendromorpha). Zoological Science 39(6): 581–593. https://doi.org/10.2108/zs220029
- Jonishi T, Nakano T (2023) Two new species of Scolopocryptops centipedes from southern Japan (Chilopoda: Scolopendromorpha: Scolopocryptopidae). European Journal of Taxonomy 908(1): 155–182. https://doi.org/10.5852/ejt.2023.908.2345
- Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285
- Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. https://doi. org/10.1093/molbev/mst010

- Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi. org/10.1093/bib/bbx108
- Koch L (1878) Japanesische Arachniden und Myriapoden. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien 27: 735–798. https://www.biodiversitylibrary.org/page/26709592
- Koch M, Edgecombe GD, Shelley RM (2010) Anatomy of *Ectonocryptoides* (Scolopocryptopidae: Ectonocryptopinae) and the phylogeny of blind Scolopendromorpha (Chilopoda). International Journal of Myriapodology 3(1): 51–81. https://doi.org/10.1163/187525410X12578602960344
- Kraepelin K (1903) Revision der Scolopendriden. Mitteilungen aus dem Naturhistorischen Museum in Hamburg 20: 5–276. https://www. biodiversitylibrary.org/page/29551135
- Kuraku S, Zmasek CM, Nishimura O, Katoh K (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research 41(W1): W22–W28. https://doi.org/10.1093/nar/gkt389
- Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34(3): 772–773. https://doi. org/10.1093/molbev/msw260
- Le SX, Schileyko AA, Nguyen AD (2023) A review of Vietnamese Scolopocryptops Newport, 1844 (Chilopoda: Scolopendromorpha), with a description of S. hoanglieni n. sp. and the updated generic list of species. Zootaxa 5228(4): 411–447. https://doi.org/10.11646/zootaxa.5228.4.3
- Lewis JGE (2003) The problems involved in the characterisation of scolopendromorph species (Chilopoda: Scolopendromorpha). African Invertebrates 44(1): 61–69. https://hdl.handle.net/10520/EJC84514
- Lewis JGE (2007) On Cryptops doriae Pocock from the wet tropical biome of the Eden Project, Cornwall (Chilopoda, Scolopendromorpha, Cryptopidae). Bulletin of the British Myriapod and Isopod Group 22: 12–16. https://bmig.org.uk/view/resource/bmig-bulletin?page=1
- McNeil J (1887) Description of twelve new species of Myriapoda, chiefly from Indiana. Proceedings of the United States National Museum 10(632): 328–334. https://doi.org/10.5479/si.00963801.10-632.328
- Melzer RR, Friedrich S, Ritzerfeld M, Bohn J, Spelda J (2011) GLOMYRIS and TYMUNAC: Myriapoda and Acari databases of the GBIF-D node invertebrates II. Spixiana 34(1): 11–20. https://pfeil-verlag.de/publikationen/spixiana-zeitschrift-fuer-zoologie-inhalt-band-34/
- Miyosi Y (1953) Myriapods of Siebold's residence (Narutaki, Nagasaki City). Supplement: myriapods from several localities in northern Kyushu. Collecting and Breeding 15(3): 73–75.
- Miyosi Y (1971) *Otocryptops capillipedatus* Takakuwa. In: Okada K, Uchida S, Uchida T (Eds) New Illustrated Encyclopedia of the Fauna of Japan, 3<sup>rd</sup> edn. Hokuryukan, Tokyo, 734.
- Moritz M, Fischer SC (1979) Die Typen der Myriapoden-Sammlung des Zoologischen Museums Berlin. II. Chilopoda. Mitteilungen aus dem Zoologischen Museum in Berlin 55: 297–352. https://doi. org/10.1002/mmnz.4830550215
- Murienne J, Edgecombe GD, Giribet G (2010) Including secondary structure, fossils and molecular dating in the centipede tree of life. Molecular Phylogenetics and Evolution 57(1): 301–313. https://doi. org/10.1016/j.ympev.2010.06.022
- Murienne J, Edgecombe GD, Giribet G (2011) Comparative phylogeography of the centipedes *Cryptops pictus* and *C. niuensis* (Chilopoda) in New Caledonia, Fiji and Vanuatu. Organisms Diversity & Evolution 11(1): 61–74. https://doi.org/10.1007/s13127-011-0041-7

- Newport G (1844) Monograph of the class Myriapoda, order Chilopoda; with observations on the general arrangement of the Articulata. Part I. Transactions of the Linnean Society of London 19(3): 265–302. https://doi.org/10.1111/j.1096-3642.1842.tb00368.x
- Newport G (1845) Monograph of the class Myriapoda, order Chilopoda; with observations on the general arrangement of the Articulata. Part II. Transactions of the Linnean Society of London 19(4): 349–439. https://doi.org/10.1111/j.1096-3642.1842.tb00370.x
- Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268–274. https://doi.org/10.1093/molbev/msu300
- Pocock RI (1890) A short account of a small collection of Myriopoda obtained by Mr. Edward Whymper in the Andes of Ecuador. Annals & Magazine of Natural History 6(32): 141–146. https://doi. org/10.1080/00222939008694014
- Pocock RI (1895) Chilopoda. Part CXXVI. In: Godman FD, Salvin O (Eds) Biologia Centrali-Americana. Volume 14. Chilopoda and Diplopoda. Taylor & Francis, London, 1–24. https://doi.org/10.5962/bhl.title.730
- Pocock RI (1896) Chilopoda. Part. CXXVII. In: Godman FD, Salvin O (Eds) Biologia Centrali-Americana. Volume 14. Chilopoda and Diplopoda. Taylor & Francis, London, 25–40. https://doi.org/10.5962/bhl.title.730
- Qiao S, Xiao SQ, Di ZY (2021) Scolopocryptops zhijinensis sp.n. and a key to species of scolopocryptopine centipedes from China (Scolopendromorpha: Scolopocryptopidae). Arthropoda Selecta 30(1): 28–33. https://doi.org/10.15298/arthsel.30.1.02
- Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5): 901–904. https://doi.org/10.1093/sysbio/syy032
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
- Say T (1821) Descriptions of the Myriapodæ of the United States. Journal of the Academy of Natural Sciences of Philadelphia 2(1): 102–114. https://www.biodiversitylibrary.org/page/36831290
- Schileyko A, Stagl V (2004) The collection of the scolopendromorph centipedes (Chilopoda) in the Natural History Museum in Vienna: A critical re-evaluation of former taxonomic identifications. Annalen des Naturhistorischen Museums in Wien 105B: 67–137.
- Schwendinger PJ, Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebrate Systematics 19(4): 297–323. https://doi.org/10.1071/IS05023
- Shelley RM (2002) A Synopsis of the North American Centipedes of the Order Scolopendromorpha (Chilopoda). Virginia Museum of Natural History Memoir 5, Virginia Museum of Natural History, Virginia, 108 pp.
- Shinohara K (1949) Notes on centipedes collected by Mr. Fujiyama in Hachijo Island. Acta Arachnologica 11(3–4): 80–85. https://doi. org/10.2476/asjaa.11.80
- Shinohara K (1982) Organizing Japanese names of centipedes. Atypus 80: 25–28.
- Shinohara K (1984) Two new species of the *Scolopocryptops* from Japan (Chilopoda: Cryptopidae). Edaphologia 31: 39–42. https://agriknowledge.affrc.go.jp/RN/2010842561
- Shinohara K (1990) A new species of the genus *Scolopocryptops* (Chilopoda: Cryptopidae) from Japan. Proceedings of the Japanese Society of Systematic Zoology 41: 62–65. https://doi.org/10.19004/pjssz.41.0\_62

- Shinohara K, Takano M, Ishii K (2015) Chilopoda. In: Aoki J-I (Ed.) Pictorial Keys to Soil Animals of Japan, Second Edition. Tokai University Press, Hadano, 873–910.
- Siriwut W, Edgecombe GD, Sutcharit C, Tongkerd P, Panha S (2016) A taxonomic review of the centipede genus *Scolopendra* Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) in mainland Southeast Asia, with description of a new species from Laos. ZooKeys 590: 1–124. https://doi.org/10.3897/zooKeys.590.7950
- Takakuwa Y (1933a) External morphology of *Otocryptops* (Miscellaneous notes on centipedes. IX.). Hakubutsugaku Zasshi 31(49): 11–22.
- Takakuwa Y (1933b) Scolopendromorpha of Japan. Shokubutsu oyobi Dobutsu 1(10): 1457–1464.
- Takakuwa Y (1937) Eine neue Art von Otocryptops und ihre geographische Verbreitung in Japan. Dobutsugaku Zasshi 49(6): 203–205. https://www.doi.org/10.34435/zm002540
- Takakuwa Y (1938) Eine neue *Otocryptops*-art aus Korea. Dobutsugaku Zasshi 50(6): 297–298. https://www.doi.org/10.34435/zm002622
- Takakuwa Y (1939) Eine neue (dritte) art von Otocryptops aus Japan. Dobutsugaku Zasshi 51(10): 698–700.
- Takakuwa Y (1940) Scolopendromorpha (Class Chilopoda: Epimorpha). Fauna Nipponica, Vol. IX, Fas. VIII, No. II. Sanseido, Tokyo, 88 pp.
- Takano M (1973) Diplopoda and Chilopoda of Nii-jima island, Japan. Takakuwaia 6: 3–4.
- Takashima H, Shinohara K (1952) The centipede-fauna of the Tokyo District. Acta Arachnologica 13(1): 3–17. https://doi.org/10.2476/asjaa.13.3
- Tamura K, Stecher G, Kumar S (2021) MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120
- Vahtera V, Edgecombe GD, Giribet G (2012) Evolution of blindness in scolopendromorph centipedes (Chilopoda, Scolopendromorpha): Insight from an expanded sampling of molecular data. Cladistics 28(1): 4–20. https://doi.org/10.1111/j.1096-0031.2011.00361.x
- Vahtera V, Edgecombe GD, Giribet G (2013) Phylogenetics of scolopendromorph centipedes: Can denser taxon sampling improve an artificial classification? Invertebrate Systematics 27(5): 578–602. https://doi.org/10.1071/IS13035
- Verhoeff KW (1934) Beiträge zur Systematik und Geographie der Chilopoden. Zoologische Jahrbücher Abteilung für Systematik 66(1–2): 1–112.
- Verhoeff KW (1935) Über Scolioplanes (Chilopoda). Zoologischer Anzeiger 111: 10–23.
- Verhoeff KW (1937) Chilopoden-studien. Zur Kenntnis der Lithobiiden. Archiv für Naturgeschichte N.F. 6: 171–257.
- Whiting MF, Carpenter JM, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: Phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46(1): 1–68. https://doi.org/10.1093/sysbio/46.1.1
- Wood Jr HC (1862) On the Chilopoda of North America, with a catalogue of all the specimens in the collection of the Smithsonian Institution. Journal of the Academy of Natural Sciences of Philadelphia. Journal of the Academy of Natural Sciences of Philadelphia 5(1): 5–52. https://doi.org/10.5962/bhl.title.1585
- Xiao S, Chen H, Di Z (2021) Scolopocryptops longipes sp. nov., a troglobitic scolopocryptopine centipede (Chilopoda: Scolopendromorpha: Scolopocryptopidae) from China. Zootaxa 5082(1): 87–94. https://doi.org/10.11646/zootaxa.5082.1.8
- Xiong B, Kocher TD (1991) Comparison of mitochondrial DNA sequences of seven morphospecies of black flies (Diptera: Simuliidae). Genome 34(2): 306–311. https://doi.org/10.1139/g91-050

#### Supplementary material 1

## Selected partitioning schemes and substitution models for the phylogenetic analyses

Authors: Taro Jonishi, Takafumi Nakano Data type: xls

- Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons. org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
- Link: https://doi.org/10.3897/zse.100.119297.suppl1

## Supplementary material 2

## Uncorrected pairwise distances for 654 bp of the COI sequences of *Scolopocryptops longisetosus* sp. nov.

Authors: Taro Jonishi, Takafumi Nakano Data type: xls

- Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons. org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
- Link: https://doi.org/10.3897/zse.100.119297.suppl2

## Supplementary material 3

#### **Bayesian Inference tree**

Authors: Taro Jonishi, Takafumi Nakano Data type: pdf

- Explanation note: Bayesian Inference tree (mean ln L = -5113.28) for 654 bp of the COI sequences. Numbers on nodes indicate ultrafast bootstrap values and Bayesian posterior probabilities. Locality numbers (Q1–Q3 and L1–L6) are shown in Fig. 1 and Table 1.
- Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons. org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
- Link: https://doi.org/10.3897/zse.100.119297.suppl3

# **ZOBODAT - www.zobodat.at**

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Zoosystematics and Evolution

Jahr/Year: 2024

Band/Volume: 100

Autor(en)/Author(s): Jonishi Taro, Nakano Takafumi

Artikel/Article: <u>Taxonomic re-appraisal of Scolopocryptops quadristriatus (Verhoeff,</u> 1934) and a description of a new species from Japan and Taiwan (Chilopoda, <u>Scolopendromorpha, Scolopocryptopidae</u>) 405-423